

COURSE CURRICULUM

B.Tech Chemical Engineering

Batch:2025-2026 Academic Year: 2025-26 Updated on: July, 2025

B.Tech in Chemical Engineering Course Curriculum

Batch: 2025-2026

Academic Year: 2025-26

W.E.F. July 2025

GSFC University, Vigyan Bhavan, P. O. Fertilizer Nagar, Vadodara - 391750, Gujarat, India

VISION

• GSFCU strives to be the best compact boutique institution with a futuristic approach, encouraging student centric culture and sharpened focus on developing industry ready & employable students with all-round development.

MISSION

- Establish an institution, which promotes creativity and innovation.
- Develop unique quality standards for academic excellence and pedagogical innovations.
- Remain agile through learning ecosystem with flexible processes & systems.
- Holistic growth for industry readiness.

No.	Programme Outcomes (POs)	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Cognitive domain	Apply
PO2	Problem analysis: Identify, formulate, research literature, and analyse complex engineering	Cognitive domain	Analyse
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Cognitive domain	Create
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	Cognitive domain	Analyse
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.	Cognitive domain	Evaluate

PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	Cognitive domain	Apply
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	Cognitive domain	Understand
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	Cognitive domain	Apply
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Cognitive domain	Create
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	Cognitive domain	Remember
PO11	Project management and finance: Demonstrate knowledge understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Cognitive domain	Apply
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Cognitive domain	Understand

No.	Programme Specific Outcomes (PSOs)	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
PSO1	Apply the principles and practices of Chemical Engineering discipline along with the mathematics and basic sciences to solve the complex engineering problems concerning the issues of environment, safety and economics.	Cognitive domain	Apply

PSO2	To prepare students for a professional World in development, design, modelling, simulation, optimization and operation of chemical processes.	Cognitive domain	Create
PSO3	Graduates of chemical engineering will be able to communicate in a professional setting, including soft skills, technical writing, presentation, and management skills making them industry ready.	domain	Analyse

Mapping of POs & PSOs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PSO1	3	3	3	2	3	1	2	2	1	1	2	1
PSO2	2	2	3	3	1	2	1	1	2	2	3	2
PSO3	2	1	2	1	3	1	0	3	2	3	3	1
Avg.	2.33	2.00	2.67	2.00	2.33	1.33	1.00	2.00	1.67	2.00	2.67	1.33

^{1:} Slight (Low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Definition of Credit:

1 Hour. Lecture (L) per week	1 credit
1 Hour Tutorial (T) per week	1 credit
2 Hours Practical (P) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
3 Hours Experiential learning	1 credit

Course code Definitions:

Lecture	L
Tutorial	T
Practical	P
Basic Science Courses	BSC
Engineering Science Courses	ESC
Humanities and Social Sciences including Management courses	HSMC
Professional core courses /Major (Core)	PCC
Professional Elective courses /Minor Stream	PEC

Open Elective courses	OEC
Laboratory course	LC
Mandatory courses	MC
Non-credit courses	NC
Project (Experiential learning)	PROJ
Experiential learning ex. Internship, Industrial	EL
Visit, Field visit, etc,	
Multidisciplinary courses	MDC
Ability Enhancement Course	AEC
Skill Enhancement Course	SCE
Value Added Courses	VAC

Structure of Undergraduate Programme:

Sr. No.	Category	Credit Breakup
1	Humanities and Social Sciences courses	12
2	Basic Science courses	28
3	Engineering Science courses	23
4	Professional Core courses	74
5	Professional Elective courses	6
6	Open Elective courses	5
7	Project work, seminar and internship	22
8	Value Added courses	5
	Total	175

Category-wise Courses:

Humanities & Social Sciences Courses

(i) Number of Humanities & Social Science Courses: 6

Sr.	Course Name		Course Name Semester		Teaching (Hours		e	Teaching Credit			
No.	c. Code		L	P	T	Tota l	L	P	T	Tota l	
1	AECC101	Fundamentals of English	I	2	0	0	2	2	0	0	2
2	AECC201	Communication Skills in English	II	2	0	0	2	2	0	0	2

3	AECC301	Entrepreneurship	III	2	0	0	2	2	0	0	2
		Development						2	O	0	2
4	AECC401	Environmental Studies	IV	2	0	0	2	2	0	0	2
5	AECC501	Disaster Risk Management	V	2	0	0	2	2	0	0	2
6	AECC601	Indian Constitution	VI	2	0	0	2	2	0	0	2
		Total					12				12

Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, **ES - End Semester**

Basic Science Course

(i) Number of Basic Science Course: 7

Chemical Engineering

(ii) Credits: 28

Sr. No	Course Code	Course Code Course Name	Semester	Teaching Scheme (Hours/week)			Teaching Credit				
•	Course coue	Course : wante		L	P	Т	Tota l	L	P	Т	Tota l
1	BTMA103	Mathematics – I	Ι	3	0	1	4	3	0	1	4
2	BTPY115	Engineering Physics	I	3	2	0	5	3	1	0	4
3	BTMA203	Mathematics – II	II	3	0	1	4	3	0	1	4
4	BTCY205	Engineering Chemistry	II	3	2	0	5	3	1	0	4
5	BTMA301	Mathematics III	III	3	0	1	4	3	0	1	4
6	BTCH303	Applied Chemistry	III	4	2	0	6	4	1	0	5
7	BTCH404	Numerical Methods in Engineering	IV	2	2	0	4	2	1	0	3
		Total					32				28

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, **ES - End Semester**

Engineering Science Course

(i) Number of Engineering Science Course: 8

Sr. No	Course	Course Name	Semester	7	Teaching (Hours		e	,	Teachin	g Credi	t
•	Code			L	P	T	Tota l	L	P	T	Tota l
1	BTEC101	Basic of Electrical & Electronics	I	3	2	0	5	3	1	0	4
2	BTME106	Workshop	I	0	2	0	2	0	1	0	1

Chemical Engineering Course Curriculum Academic Year 2025-26 Fundamental in Fire, BTFS108 Ī Environment, health, Safety BTME202 **Engineering Graphics** II BTME209 **Engineering Mechanics** II BTCS206 II Python Programming BTCH405 Material Science and IV Engineering BTCH702 VII Plant Design and Economics Total

 $\label{eq:Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester$

Professional Core Courses

(i) Number of Professional Core Courses: 18

Sr. No	Course	Course Name	Semest	7	Teaching (Hours	•	e	,	Teachin	g Credi	t
•	Code	Course I mine	er	L	P	Т	Tota l	L	P	Т	Tota l
1	BTCH304	Process Calculations	III	3	0	1	4	3	0	1	4
2	BTCH305	Mechanical Operations	III	4	2	0	6	4	1	0	5
3	BTCH310	Fluid Flow Operations	III	3	2	0	5	3	1	0	4
4	BTCH401	Chemical Engineering Thermodynamics - I	IV	3	0	1	4	3	0	1	4
5	BTCH402	Heat Transfer Operations	IV	3	2	1	6	3	1	1	5
6	BTCH403	Process Technology	IV	4	2	0	6	4	1	0	5
7	BTCH408	Industrial Pollution Control	IV	2	0	0	2	2	0	0	2
8	BTCH501	Mass Transfer Operations - I	V	4	2	0	6	4	1	0	5
9	BTCH502	Chemical Reaction Engineering - I	V	3	2	1	6	3	1	1	5
10	BTCH503	Chemical Engineering Thermodynamics - II	V	3	0	1	4	3	0	1	4
11	BTCH504	Instrumentation & Process Control	V	4	2	0	6	4	1	0	5
12	BTCH601	Mass Transfer Operations - II	VI	3	2	1	6	3	1	1	5
13	BTCH602	Chemical Reaction Engineering - II	VI	3	0	0	3	3	0	0	3
14	BTCH603	Process Equipment Design - I	VI	3	2	0	5	3	1	0	4
15	BTCH701	Process Modelling, Simulation and Optimization	VII	4	2	0	6	4	1	0	5
16	BTCH710	Chemical Process Safety	VII	3	0	0	3	3	0	0	3

Chemical Engineering Course Curriculum Academic Year 2025-26 17 BTCH708 VII Process Equipment Design - II 2 0 1 0 BTCH709 Transport Phenomena VII 3 0 0 3 3 0 0 18 3 57 20 7 84 57 74 Total 10

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Professional Elective Courses

(i) Number of Professional Elective Course: 2

(ii) Credits: 6

Sr. No	Course Code	Course Name	Semes	ן	Feaching (Hours	g Schem s/week)	e		Teachin	g Credi	t
•			ter	L	P	T	Tota l	L	P	T	Tota l
1	BTCH605A	Petroleum Engineering	VI	3	0	0	3	3	0	0	3
	BTCH605B	Polymer Science & Technology									
	BTCH605E	Green Technology									
	BTCH605F	Industrial Engineering Practices									
	BTCH605G	Advanced Separation Techniques									
2	BTCH706A	Petroleum Refining Processes	VII	3	0	0	3	3	0	0	3
	BTCH706B	Polymer Processing									
	BTCH706C	Bioprocess Engineering									
	BTCH706E	Process Intensification									
	BTCH706F	Industrial Management Practices									
		Total		6	0	0	6	6	0	0	6

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Open Elective Courses:

(i) Number of Open Elective Courses: 2

Sr.	Course			7	Teaching (Hours	g Schem s/week)	e	,	Teachin	g Credi	t
No.	Code	Course Name	Semester	L	P	Т	Tota l	L	P	T	Tota l
1	NOC01	NPTEL Online Courses	V	0	0	0	0	0	0	0	2

MIT-	Chemic	al Engineering	Course	Curric	ulum			Acad	emic \	ear 2	025-2	5
a goa2	BTOE1	Plant Utilities	VI	3	0	0	3	3	0	0	3	
	BTOE2	Corrosion Science										
	BTOE8	Energy Technology										
		Tot	al	3	0	0	3	3	0	0	5	

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Project Work, Seminar and Internship in Industry or Elsewhere

(i) Number of Project Work, Seminar and Internship in Industry or Elsewhere: 7

(ii) Credits: 22

Sr.	Course	Course Name	Semester	7	Teaching (Hours		e		Teachi	ng Cred	it
No.	Code			L	P	Т	Tota l	L	P	T	Total
1.	BTCH208	Industrial Internship	II	0	0	0	0	0	0	0	2
2.	BTCH307	Industrial Internship	III	0	0	0	0	0	0	0	2
3.	BTCH407	Industrial Internship	IV	0	0	0	0	0	0	0	2
4.	BTCH506	Industrial Internship	V	0	0	0	0	0	0	0	2
5.	BTCH606	Industrial Internship	VI	0	0	0	0	0	0	0	2
6.	BTCH707	Industrial Internship	VII	0	0	0	0	0	0	0	2
7.	BTCH801	Project	VIII	0	20	0	2	0	10	0	10
		Total									22

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Ability Enhancement Courses

(i) Number of Ability Enhancement Courses: 6

	(II) Great										
Sr No	Code	Subject	Semester	L	P	T	Total	L	P	Т	Total
1	AECC101	Fundamentals of English	I	2	0	0	2	2	0	0	2
2	AECC201	Communication Skills in English	II	2	0	0	2	2	0	0	2
3	AECC301	Entrepreneurship Development	III	2	0	0	2	2	0	0	2
4	AECC401	Environmental Studies	IV	2	0	0	2	2	0	0	2
5	AECC501	Disaster Risk Management	V	2	0	0	2	2	0	0	2

T	Chemi	cal Engineering	5	Cour	se Currio	culum		Acader	nic Year	2025	-26
ar 6 Touris	AECC601	Indian Constitution	VI	2	0	0	2	2	0	0	2
		Total									12

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Value Added Courses

(i) Number of Value-Added Courses: 2

(ii) Credits: 5

Sr.	Course	Course Name	Semester	7	Teaching (Hours		e		Teachin	g Credi	t
No.	Code			L	P	Т	Tota l	L	P	T	Tota l
1	VACC101	Foundation Course	Ι	0	0	0	0	0	0	0	4
2	VACC102	Tinkering & Mentoring	2	0	4	0	4	0	4	0	1
		Total									5

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Research Project / Dissertation

(i) Number of Research Project / Dissertation: 1

(ii) Credits: 10

Sr.	Course	Course Name	Semester	7	Teaching (Hours		e	,	Teachin	g Credi	t
No.	Code			L	P	T	Tota l	L	P	T	Tota l
1	BTCH801	Project	VIII	0	20	0	2	0	10	0	10
		Total									10

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

About the Program

Chemical Engineering covers a vast area from producing innovative products in laboratories to implementing them in large scale production in industries by combining the basic principles of Chemistry, mathematics, physics, life sciences and economics. The Chemical Engineering Program at GSFC University focuses to develop Industry ready students for the futuristic areas in modelling and simulation, process control, reaction engineering, transfer operations, thermodynamics, renewable energy and so on. The Program is well equipped with new state of art labs to boost up high quality research & learning activity with the help of several software such as CHEMCAD and MATLAB. Chemical engineering now extends beyond its traditional roots in oil and gas processing to interdisciplinary emerging technologies like recycling and waste management, green technology,

Chemical Engineering Course Curriculum Academic Year 2025-26 nuclear and biomedical engineering. Apart from this the Gujarat Industrial Policy - 2020 has indicated an increase in demand of Chemical Engineers in near future as major investment is being made in the sector of Petroleum, Chemicals and Petrochemicals in 453 sq. km. at Dahej, Gujarat. The GSFC University in Vadodara, Gujarat is situated at the heart of the chemical belt comprising of major chemical industries like GSFC Limited, IOCL, GACL, Reliance - IPCL, Prakash Chemicals, Deepak Nitrite in the nearby vicinity along-with various chemical industries like ONGC, Reliance Jamnagar Refinery, Atul Chemicals, etc.in other parts of Gujarat.

The great philosopher Aristotle once said, "for the things we have to learn before we can do them, we learn by doing them". Learning by doing or experiential learning is the core belief that we proudly follow at GSFC University! Think about the time when from school we used to go on field trips to a manufacturing industry or a museum, seeing the pages of our books alive in front of us always had a lasting impression. Even after leaving school and joining the Chemical Engineering Program at GSFC University we pledged to go by the same lasting impression through our industrial internships. Internships are undertaken for overall development of student focussing the curriculum application and allied sectors after every semester throughout the course followed by the final six months of industrial project in the last semester. The campus situated within the vicinity of the esteemed organization of GSFC Limited with access to 22 process plants along with internship opportunities in RIL, GACL, L&T, GFL, IOCL, Deepak Nitrate, GNFC etc gives immediate exposure to the students to the real time aspects of Chemical Engineering. To accomplish a holistic development, the hands-on experience is well supported by the chemical engineering program's cutting-edge curriculum meeting industry demands and fully equipped laboratory facilities for indulging students in the basic knowledge for becoming industry ready. In keeping with the unprecedented time, classroom teaching has also evolved from the traditional ICT tools to Google Classroom and innovative pedagogies like breakout rooms for team building activities, flipped classrooms for making lessons more engaging. Chemical Engineering Program in GSFC University offers a host of courses apart from the core chemical engineering subjects like Petroleum refining Engineering, Plant Utilities, Polymer Science & Technology, Energy

Technology, Industrial Management, Bioprocess Engineering. For soft skill development of students to meet professional goals in terms of presentation and interview a course in Soft Skills and Technical Writing is also offered. Keeping abreast with the latest developments in chemical fields, several courses are offered matching the emerging technologies like Industrial Pollution Control, Chemical Process Safety, Advanced Separation Techniques, Corrosion science, Process Technology and Environmental Science.

Chemical Engineering Course Curriculum Academic Year 2025-26
Along with the course curriculum, the students of chemical engineering also participate in various cocurricular and extra-curricular activities through different student managed clubs and AIChE GSFCU
student chapter. AIChE student chapters are a great way for chemical engineering students to connect
both locally and globally with other students and experts in the field of chemical engineering for
networking, scholarships, career placement, education opportunities etc. AIChE GSFC University
Student Chapter won consecutive two times the global recognition of the Outstanding Student Chapter
Award in the year 2021 and 2022 respectively!

Students also have exposure to the incubation and innovation center at GSFC University named GSFC University Incubation, Innovation, and Technology & Applied Research Centre (GUIITAR); which helps them orient, develop, tinker and create their own business platforms as a career path option.

Chemical Engineering

Teaching Scheme

Semester-I

Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semes

Sr.					ng Sche ırs/weel		r	Feachi	ng Credi	it			Evaluation	Scheme		
No ·	Course Code	Course Name	L	P	Т	Total	L	P	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theo ry Mark s	Practical Marks	Total Marks
1	BTEC101	Basics of Electrical & Electronics	3	2	0	5	3	1	0	4	20	40	40	100	50	150
2	BTMA103	Mathematics – I	3	0	1	4	3	0	1	4	20	40	40	100	0	100
3	BTPY115	Engineering Physics	3	2	0	5	3	1	0	4	20	40	40	100	50	150
4	BTME106	Workshop	0	2	0	2	0	1	0	1	0	0	0	0	50	50
5	BTFS108	Fundamentals in Fire & Environment, Health, Safety	2	0	0	2	2	0	0	2	20	40	40	100	0	100
6	AECC101	Fundamentals of English	2	0	0	2	2	0	0	2	20	40	40	100	0	100
7	VACC101	Foundation Course	0	0	0	0	0	0	0	4	0	0	0	0	100	100
		Total	13	6	1	20	13	3	1	21						750

Teaching Scheme

Semester – II

Sr.			Teach	ing Schem	e (Hours/	week)	Т	'eachiı	ng Cred	it			Evaluation	on Scheme		
No ·	Course Code	Course Name	L	P	Т	Tot al	L	P	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practical Marks	Total Marks
1	BTME202	Engineering Graphics	0	4	0	4	0	2	0	2	-	-	-	-	50	50
2	BTMA203	Mathematics - II	3	0	1	4	3	0	1	4	20	40	40	100	-	100
3	BTME209	Engineering Mechanics	3	2	0	5	3	1	0	4	20	40	40	100	50	150
4	BTCY205	Engineering Chemistry	3	2	0	5	3	1	0	4	20	40	40	100	50	150
5	BTCS206	Python Programming	3	2	0	5	3	1	0	4	20	40	40	100	50	150
7	AECC201	Communication Skills in English	2	0	0	2	2	0	0	2	20	40	40	100	-	100
8	BTCH208	Industrial Internship	0	0	0	0	0	0	0	2	-	-	-	-	-	100
9	VAC201*	Tinkering & Mentoring	0	2	0	1	0	2	0	1	-	-	-	-	50	50
		Total	14	12	1	26	14	7	1	23						850

*syllabus of VACC201 attached after semester 8

Teaching Scheme Semester – III

Sr.				Teaching (Hours		;		Teachin	g Credit	;			Evaluation	on Scheme		
No ·	Course Code	Course Name	L	P	T	Total	L	P	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practical Marks	Total Marks
1.	BTMA301	Mathematics-III	3	0	1	4	3	0	1	4	20	40	40	100	-	100
2.	BTCH310	Fluid Flow Operations	3	2	0	5	3	1	0	4	20	40	40	100	50	150
3.	BTCH303	Applied Chemistry	4	2	0	6	4	1	0	5	20	40	40	100	50	150
4.	BTCH304	Process Calculations	3	0	1	4	3	0	1	4	20	40	40	100	-	100
5.	BTCH305	Mechanical Operations	4	2	0	6	4	1	0	5	20	40	40	100	50	150
7.	AECC301	Entrepreneurship Development	2	0	0	2	2	0	0	2	20	40	40	100	-	100
8.	BTCH307	Industrial Internship	0	0	0	-	0	0	0	2	-	-	-	-	-	100
		Total	19	6	2	27				26						850

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Teaching Scheme Semester-IV

Sr.	Course		[ng Sche rs/week			Teachi	ng Cred	lit			Evaluatio	on Scheme		
No ·	Code	Course Name	L	P	Т	Total	L	P	T	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practical Marks	Total Marks
1	BTCH401	Chemical Engineering Thermodynamics - I	3	0	1	4	3	0	1	4	20	40	40	100	0	100
2	BTCH402	Heat Transfer Operations	3	2	1	5	3	2	1	5	20	40	40	100	50	150
3	BTCH403	Process Technology	4	2	0	6	4	2	0	5	20	40	40	100	50	150
4	BTCH404	Numerical Methods in Engineering	2	2	0	4	2	2	0	3	20	40	40	100	50	150
5	BTCH405	Materials Science & Engineering	3	0	0	3	3	0	0	3	20	40	40	100	0	100
6	BTCH408	Industrial Pollution Control	2	0	0	2	2	0	0	2	20	40	40	100	0	100
7	AECC401	Environmental Science	2	0	0	2	2	0	0	2	20	40	40	100	0	100
8	BTCH407	Industrial Internship	0	0	0	0	0	0	0	2	-	-	-	-	0	100
		Total	19	6	2	27	19	6	2	26		_				950

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Chemical Engineering

Teaching Scheme

Semester-V

Sr.				Teaching (Hours		>		Teachin	g Credit	t	Evaluation Scheme					
No ·	Course Code	Course Name	L	P	Т	Total	L	P	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practical Marks	Total Marks
1	BTCH501	Mass Transfer Operations-I	4	2	0	6	4	1	0	5	20	40	40	100	50	150
2	BTCH502	Chemical Reaction Engineering-I	3	2	1	6	3	1	1	5	20	40	40	100	50	150
3	BTCH503	Chemical Engineering Thermodynamics-II	3	0	1	4	3	0	1	4	20	40	40	100	-	100
4	BTCH504	Instrumentation & Process Control	4	2	0	6	4	1	0	5	20	40	40	100	50	150
5	NOC01	NPTEL Online Courses	0	0	0	0	0	0	0	2	-	-	-	-	-	100
6	AECC501	Disaster Risk Management	2	0	0	2	2	0	0	2	20	40	40	100	-	100
7	BTCH506	Industrial Internship	0	0	0	0	0	0	0	2	-	-	-	-	-	100
		Total	16	6	2	24	16	3	2	25						850

Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Teaching Scheme Semester-VI

Sr.					ng Schen irs/week)			Teach	ing Cred	lit			Evaluation	on Scheme		
No ·	Course Code	Course Name	L	P	Т	Total	L	P	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practica l Marks	Total Marks
1	BTCH601	Mass Transfer Operations - II	3	2	1	6	3	1	1	5	20	40	40	100	50	150
2	BTCH602	Chemical Reaction Engineering - II	3	0	0	3	3	0	0	3	20	40	40	100	0	100
3	BTCH603	Process Equipment Design – I	3	2	0	5	3	1	0	4	20	40	40	100	50	150
4	BTCH605	Professional Elective - I	3	0	0	3	3	0	0	3	20	40	40	100	0	100
5	ВТОЕ	Open Elective	3	0	0	3	3	0	0	3	20	40	40	100	0	100
6	AECC601	Indian Constitution	2	0	0	2	2	0	0	2	20	40	40	100	0	100
7	BTCH606	Industrial Internship	0	0	0		0	0	2	2	0	0	0	0	0	100
		Total	17	4	1	22	17	2	3	22						800

Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Teaching Scheme Semester – VII

Sr.			Teaching Scheme (Hours/week) Teaching Credit Evaluation Scheme													
No ·	Course Code	Course Name	L	P	T	Total	L	P	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practica l Marks	Total Marks
1	BTCH701	Process Modelling, Simulation and Optimization	4	2	0	6	4	1	0	5	20	40	40	100	50	150
2	BTCH702	Plant Design & Economics	3	0	0	3	3	0	0	3	20	40	40	100	-	100
3	BTCH708	Process Equipment Design - II	2	0	1	3	2	0	1	3	20	40	40	100	-	100
4	BTCH710	Chemical Process Safety	3	0	0	3	3	0	0	3	20	40	40	100	-	100
5	BTCH709	Transport Phenomena	3	0	0	3	3	0	0	3	20	40	40	100	-	100
6	BTCH706	Professional Elective - II	3	0	0	3	3	0	0	3	20	40	40	100	-	100
7	BTCH707	Industrial Internship	0	0	0	0	0	0	0	2	-	-	-	-	-	100
		Total	18	2	1	21	18	1	1	22						750

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Chemical Engineering

Teaching Scheme Semester – VIII

Sr.			Teach	ing Sche	me (Hou	rs/week)		Teachi	ng Credi	it	Evaluation Scheme					
No ·	Course Code	Course Name	L	P	Т	Total	L	P	T	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practica l Marks	Total Marks
1	BTCH801	Project	0	20	0	20	0	20	0	10	-	-	-	-	100	100

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

PEC/OEC-I

Course Code	Course Name
BTCH605A	Petroleum Engineering
BTCH605B	Polymer Science & Technology
BTCH605E	Green Technology
BTCH605F	Industrial Engineering Practices
BTCH605G	Advanced Separation Techniques
NOC01	NPTEL Online Courses

PEC/OEC-II

Course Code	Course Name
BTCH706A	Petroleum Refining Processes
BTCH706B	Polymer Processing
BTCH706C	Bioprocess Engineering
BTCH706E	Process Intensification
BTCH706F	Industrial Management Practices
BTOE1	Plant Utilities
BTOE2	Corrosion Science
BTOE8	Energy Technology

Summary of Credits:

Sr. No.	Semester	Course	Course Name	Theory marks	Practical marks	Course Credit
110.		Code		marks	mai KS	Credit
1	I	BTEC101	Basics of Electrical & Electronics	100	50	4
2	I	BTMA103	Mathematics – I	100	0	4
3	I	BTPY115	Engineering Physics	100	50	4
4	Ι	BTME106	Workshop	0	50	1
5	I	BTFS108	Fundamentals in Fire & Environment, Health, Safety	0	0	2
6	I	AECC101	Fundamentals of English	100	0	2
7	I	VACC101	Foundation Course	0	100	4
8	II	BTME202	Engineering Graphics	0	50	2
9	II	BTMA203	Mathematics - II	100	0	4
10	II	BTME209	Engineering Mechanics	100	50	4
11	II	BTCY205	Engineering Chemistry	100	50	4
12	II	BTCS206	Python Programming	100	50	4
14	II	AECC201	Communication Skills in English	100	0	2
15	II	BTCH208	Industrial Internship	0	100	2
16	II	VACC201	Tinkering and Mentoring	0	100	1
17	III	BTMA301	Mathematics-III	100	0	4
18	III	BTCH310	Fluid Flow Operations	100	50	4
19	III	BTCH303	Applied Chemistry	100	50	5
21	III	BTCH304	Process Calculations	100	0	4
22	III	BTCH305	Mechanical Operations	100	50	5
23	III	AECC301	Entrepreneurship Development	100	0	2
24	III	BTCH307	Industrial Internship	0	100	2
25	IV	BTCH401	Chemical Engineering Thermodynamics - I	100	0	4
26	IV	BTCH402	Heat Transfer Operations	100	50	5
27	IV	BTCH403	Process Technology	100	50	5
28	IV	BTCH404	Numerical Methods in Engineering	100	50	3

-	Chemica	l Engineerin	g Course Curriculum	А	cademic Ye	ar 2025-26
29	IV	BTCH405	Materials Science & Engineering	100	0	3
30	IV	BTCH408	Industrial Pollution Control	100	0	2
31	IV	AECC401	Environmental Studies	100	0	2
32	IV	BTCH407	Industrial Internship	0	100	2
33	V	BTCH501	Mass Transfer Operations-I	100	50	5
34	V	BTCH502	Chemical Reaction Engineering-I	100	50	5
35	V	BTCH503	Chemical Engineering Thermodynamics-II	100	0	4
36	V	BTCH504	Instrumentation & Process Control	100	50	5
37	V	NOC01	NPTEL Online Courses	-	-	2
38	V	AECC501	Disaster Risk Management	100	0	2
39	V	BTCH506	Industrial Internship	0	100	2
40	VI	BTCH601	Mass Transfer Operations - II	100	50	5
41	VI	BTCH602	Chemical Reaction Engineering - II	100	0	3
42	VI	BTCH603	Process Equipment Design – I	100	50	4
43	VI	BTCH605	Professional Elective - I	100	0	3
44	VI	ВТОЕ	Open Elective	100	0	3
45	VI	AECC601	Indian Constitution	100	0	2
46	VI	BTCH606	Industrial Internship	0	100	2
47	VII	BTCH701	Process Modelling, Simulation and Optimization	100	50	5
48	VII	BTCH702	Plant Design & Economics	100	0	3
49	VII	BTCH708	Process Equipment Design - II	100	0	3
50	VII	BTCH710	Chemical Process Safety	100	0	3
51	VII	BTCH709	Transport Phenomena	100	0	3

Professional Elective - II

Industrial Internship

Project

100

0

0

Total

0

100

100

3

2

10

175

BTCH706

BTCH707

BTCH801

52

53

54

VII

VII

VIII

COURSE CODE BTEC101	COURSE NAME BASIC OF ELECTRICAL AND ELECTRONICS	SEMESTER I
------------------------	---	---------------

	Teaching Sch	neme (Hours)			Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	0	5	3	1	0	4

a	I	
Course Pre-requisites	NIL	
Course Category	Engineering Science	
Course focus	Skill development	
Rationale	Basic electrical and electronics knowledge is essential for understanding modern technology, from everyday applications to career opportunities. It provides a foundation for working with computers, telecommunications, renewable energy, and more. It promotes safety by teaching proper handling of electricity and hazard awareness. This knowledge enables DIY projects, repairs, and problem-solving skills. It also contributes to environmental sustainability by understanding energy consumption and designing efficient systems.	
Course Revision/ Approval Date:	24-04-2017	
Course Objectives	To enable the student to:	
	1: Emphasize the fundamental concepts and overview of Electrical Engineering & Electronics.	
	2: Imparting fundamental knowledge on electronic components	
	3: To provide knowledge about electrical machines	
	4: To understand about communication engineering concepts	
	5: To gain knowledge about test equipment of electrical and electronics.	

Course Content (Theory)		Contact hours
Unit 1: Electrical Engineering	20%	10
Theory: Study of voltage, current, power & energy. Application of Ohm's		
law, Kirchhoff's law, Lenz law. Electromagnetic induction through the		

Chemical Engineering	Course Curriculum	Academic Year 2025-26
----------------------	-------------------	-----------------------

25%	10
25%	10
20%	10
10%	5
	25%

List of Practical		Contact
		hours
1: Symbols of Electrical & Electronics equipment, Basics of Electrical	20%	3
safety & Study of Electrical Safety rules		
2: Patch cords, Digital Multimeter (DMM), Familiarization with Digital multimeter (DMM).	20%	3
3: Measurement of AC Voltage at 230 V AC Mains plug, Measurement of	20%	3
DC Voltage for cell phone battery of 3.8 V DC, Measurement of Resistance		
of Current coil & Potential coil of Energy meter, Measurement of		
Continuity of any wire/fuse.		
4: Study the basics of phase control transformer & verify its turn-ratio,	20%	3
Familiarization with Digital Storage Oscilloscope (DSO)		
5: Understand the construction & working of energy meter, Load Test on 1	20%	3
Phase AC CSCR Type AC Motor, Load Test on DC Shunt Motor.		

Instructional Method and Pedagogy: Teaching basic electrical and electronics, a combination of instructional methods and pedagogies can be employed to enhance learning. A hands-on approach, such as laboratory experiments, allows students to directly engage with circuits and electronic components, reinforcing theoretical concepts.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Apply the concepts of limits, continuity and derivatives to solve problems.	Cognitive Cognitive	Apply Determine

Course Curriculum	Academic Year 2025-26
Course Curricularii	Academic real 2023-20

Chemical Engineering	Course Curriculur	n Acad	lemic Year 2025-26
CO2: Determine convergence or di	vergence of sequences		
and series.		Cognitive	Apply
CO3: Use Taylor and MacLaurir functions. Solve application problem	•	Cogmure	Пррту
CO4: Understand functions of several continuity, partial derivatives. Iden	veral variables, limits,	Cognitive	Understand
system of linear equations.	,	Cognitive	Apply
CO5: To deal with functions of se essential in most branches of enginee			
of matrices and linear algebra in a co	mprehensive manner.		

Learning Resources			
Reference Books:			
1. Thomas, G.B., Finney, R.L., Calculus and Analytic Geometry, 9th			
Ed., Wesley/Narosa, (1998).			
Journals & Periodicals:			
Journal of Electrical Engineering and Electronics			
2. IET Power Electronics			
3. International Journal of Electronics			
4. IEEE Transactions on Education:			
Other Electronic Resources:			
1. www.electronicsclub.info			
2. www.circuitlab.com			

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

Chemical Engineering	Course Curriculum	Academic real 2025-20
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks
Project/ Industrial		
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks
	Practical understanding of the subject on the Project/Industrial.	30 marks
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks
	Attendance	10 marks
	Total	100 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	0	3	0
CO3	0	2	0
CO4	0	0	1
CO5	0	0	3
Avg	0.4	1	0.8

Mapping of POs & COs

Chemical Engineering

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	1	0	0	0	2	0	0	1	0	0	3
CO2	3	0	0	0	0	1	0	0	2	0	0	3
CO3	3	0	0	0	0	1	0	0	2	0	0	3
CO4	3	0	0	0	0	2	0	0	2	0	0	3
CO5	3	0	0	0	0	1	0	0	1	0	0	3
Avg	3	0.2	0	0	0	1.4	0	0	1.6	0	0	0

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Chemical Engineering

COURSE CODE	COURSE NAME	SEMESTER
BTMA103	MATHEMATICS-I	I

7	Гeaching Sch	neme (Hours	s)		Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	0	1	4

Course Pre-requisites	Differentiation and Integration (Basic calculus), Trigonometry
Course Category	Basic Science
Course focus	Skill Development
Rationale	Mathematics is essential for everyday life, providing practical applications and problem-solving skills. It forms the foundation for science, technology, engineering, and mathematics (STEM) fields. Learning mathematics enhances cognitive development, including critical thinking and analytical skills.
Course Revision/ Approval Date:	24-04-2017
Course Objectives (As per Blooms' Taxonomy)	1: Gives a clear understanding of the ideas of calculus as a solid foundation for subsequent courses in mathematics and other disciplines.
	2: Comprehensive focus on teaching calculus based on concepts as well as procedures.
	3: Enables students to apply their knowledge and solve practical problems in physical sciences and engineering.
	4: Understanding basic concepts of linear algebra (systems of linear equations, matrix calculus, vectors and basic vector operations)
	5: Solving computational problems of linear algebra

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Review of limits, continuity, and differentiability		
Theory: Review of limits, continuity, and differentiability of function of	20%	07
single variable; indeterminate forms and 'Hospital's Rule.		
Unit 2: Sequences and series		
Theory: Sequences and series, Tests for convergence of series (nth term,	20%	10
Comparison, limit comparison, Ratio, Root, Integral, Geometric series,		

5	Chemical Engineering Course Curriculum	Academic Yea	ar 2025-26
8	Alternating series), Power Series, Taylor Series, Maclaurin's Series.		
	Unit 3: Partial Derivatives:		
	Theory: Limit and continuity of functions of two variables, chain rule,	20%	10
	total derivatives, Taylor's series expansion of function of two variables.		
	Unit4: Applications of Partial Derivatives:		
	Theory: Maxima and minima, Lagrange multipliers, errors and	20%	08
	approximation, implicit functions, tangent plane and normal to a surface.		
ĺ	Unit 5: Linear Algebra:		
	Theory: Elementary operations and their use in getting the Rank, Inverse	20%	10
	of a matrix and solution of linear simultaneous equations. Orthogonal,		
	Symmetric, Skew-symmetric, Hermitian, Skew-Hermitian, Normal & amp;		
	Unitary matrices and their elementary properties. Characteristic		
	polynomials, Eigen- values and Eigenvectors of a matrix, Cayley Hamilton		

theorem (without proof) and its use in finding the inverse of a matrix.

Applications of Matrices.

List Of Practical Tutorial	Weightage	Contact
		hours
Unit 1:	20%	3
1. Limits, Continuity, Differentiability of one variable functions.		
2. Limits, Continuity, Differentiability of two variable functions.		
Unit 2:	20%	3
1. Partial Derivatives: Total Derivatives, Composite functions.		
2.Application of Partial Derivatives: Maxima – Minima of functions,		
Taylor's Series.		
Unit 3:	20%	3
1. Application of Partial Derivatives: Tangent Plane Normal line, Error		
approximation.		
2. Matrices: Rank and Inverse of matrix.		
Unit 4:	20%	3
1. Matrices: Solution of System of linear equations.		
2. Eigen values and Eigenvectors of a matrix.		
Unit 5:	20%	3
1. Convergence and Divergence of Sequence.		
2.Convergence and Divergence of Series.		
2. Convergence and Divergence of Series.		

Instructional Method and Pedagogy: For engineering mathematics, an effective instructional method involves a combination of problem-based learning, active learning, and technology integration. Engage students in solving real-world engineering problems, promoting critical thinking and application of mathematical concepts. Utilise visualisations, demonstrations, and mathematical software to enhance understanding.

Chemical Engineering

	1		
		Him	
-1	140	47	100 m
H			-
1			1110
1			-
- %	TO OT	er or	toda.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
CO1: Apply the concepts of limits, continuity and derivatives to solve problems.	Cognitive	Understand
CO2: Determine convergence or divergence of sequences and series	Cognitive	Understand
CO3: Use Taylor and MacLaurin series to represent functions. Solve application problems.	Cognitive	Apply
CO4: Understand functions of several variables, limits, continuity, partial derivatives. Identify and solve some system of linear equations.	Cognitive	Understand
CO5: To deal with functions of several variables that is essential in most branches of engineering. The essential tool of matrices and linear algebra in a comprehensive manner.	Cognitive	Apply

Learning R	Resources
1.	Reference Books:
	Thomas, G.B., Finney, R.LCalculus and Analytic Geometry, 9th Ed., Wesley/Narosa,
	(1998).
2.	Journals & Periodicals:
	Journal of Optimization Theory and Applications
	2. Journal of Mathematical Modelling and Algorithms
	3. SIAM Journal on Applied Mathematics
	4. Mathematical Problems in Engineering
3.	Other Electronic Resources:
	1. www.onlinemathlearning.com
	2. www.mathway.com

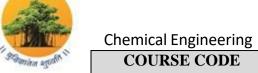
Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

TIME	Chemical Engineering	
920 84	Tl	Ī

Course Curriculum

Chemical Engineering	Course Curriculum	Academic fear 2025-
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
Warks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
Practical Marks		<u> </u>
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks
Project/ Industrial		
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks
	Practical understanding of the subject on the Project/Industrial.	30 marks
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks
	Attendance	10 marks
	Total	100 Marks

Mapping of PSOs & COs


	PSO1	PSO2	PSO3
CO1	0	2	2
CO2	0	0	1
CO3	0	0	0
CO4	0	2	2
CO5	0	2	3
Avg.	2.4	0.8	0.6

Chemical Engineering

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	2	2	3	1	1	0	0	0	0	1	0	2
CO2	2	1	1	0	0	0	0	0	0	1	0	0
CO3	2	1	2	1	0	0	0	0	0	1	0	1
CO4	3	2	2	2	1	0	0	0	0	1	0	2
CO5	3	2	3	3	1	0	0	0	0	1	0	2
Avg.	2.4	1.6	2.2	1.4	0.6	0	0	0	0	1	0	1.4

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE BTPY115 COURSE NAME Engineering Physics I

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Prerequisites	Fundamentals of Mathematics
Course Category	Core/Applied
Course focus	Skill Development
Rationale	Engineering physics combines the principles of physics and engineering, bridging the gap between theory and practical applications. It equips students with problemsolving skills, a deep understanding of scientific principles, and the ability to apply them to engineering challenges.
Course Revision/ Approval Date:	July 7, 2025
Course Objectives	To enable the student:
(As per Blooms' Taxonomy)	1: To comprehend Maxwell's equations and the electromagnetic spectrum.
	2: To understand the dual nature of matter-energy and the fundamentals of quantum mechanics.
	3: To understand the types of semiconductor devices and their applications.
	4: To understand & distinguish analog/digital signals and the working of logic gates.
	5: To define and categorize transmitters, transducers, and sensors.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Electromagnetism: Oscillations(mechanical/non-mechanical), Maxwell's Equations and significance, Origin of electromagnetic waves, Electromagnetic Spectrum and applications	20%	9
Unit 2: Modern Physics Matter & EM Energy, dual nature of matter(electron diffraction) & energy (photoelectric effect), Interference, Wave Function and its physical Significance, One Dimensional Time	20%	9

Course Content (Theory)	Weightage	Contact hours
Independent Schrodinger Equation and its application		
Unit 3: Physics of Semiconductors:		
Classification of materials (based on resistivity), Intrinsic & Extrinsic Semiconductors, p-type and n-type semiconductor, PN junction diode (biasing & IV characteristics), Application of diodes (rectifier, special purpose diodes)	22.2%	10
Unit 4: Digital Logic Circuits:		
Analog and Digital Signals, Logic Levels and Boolean system, Logic Gates, NOT/OR/AND gate using diodes	17.7%	8
Unit 5: Physics of Sensors:		
Transducers & Sensors (Definition & Classification), Working of temperature, optical, pressure, and smoke detecting sensor	20%	9

List of Practical	Weightage	Contact hours
Unit 1: (1) To determine the least count of Vernier calipers, micrometer screw gauge and spectrometer. (2) To determine the frequency of a tuning fork using Melde's experimental setup. (3) To determine acceleration due to gravity using a bar pendulum.	20%	6
 Unit 2: (4) To determine the value of Planck constant using the photoelectric experimental setup. (5) To determine the radius of curvature of a given planoconvex lens using Newton's rings setup. (6) To determine the wavelength of a monochromatic source using diffraction grating experiment. 	20%	6
Unit 3: (7) To study different types of rectifier circuits. (8) To study the characteristics of LED/Zener. 	13%	4
Unit 4: (9) To study different logic gates.	7%	2
Unit 5: (10) Demonstration of a smoke detecting system.	7%	2
(11) Pre-End Sem Exam revision.	20%	6
(12) Journal Checking & VIVA preparation.	13%	4

Instructional Method and Pedagogy:

Chalk-board, Presentation, Discussion, Quiz, Demonstration, Hands-on Practicals

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Subdomain
After successful completion of the above course, stu	idents will be ab	le to:
CO1: Illustrate basic applications of the electromagnetic spectrum.		Understand & Remember
CO2: Interpret the dual nature of matter-energy and physical significance of wave functions in fundamental quantum scenarios.		Understand & Interpret
CO3: Explain the working principles and basic uses of semiconductor devices.	Cognitive	Understand & Apply
CO4: Demonstrate the working of simple logic gates.		Apply & Create
CO5: Explain the working principles of common sensors.		Understand & Explain

Learning I	Resources
1.	Reference Books:
	 Concepts of Physics, by H. C. Verma, Bharati Bhawan (Publishers & Distributors).
	 A Textbook of Optics, N. Subrahmanyam, Brij Lal, M. N. Avadhanulu, S. Chand Publishers
	3. Quantum Mechanics, G. Aruldhas, Second Edition, PHI Publication
	4. Principles of Electronics, V. K. Mehta and Rohit Mehta, S. Chand Publishers
	 Digital Principles and Applications, Malvino and Leach, Seventh Edition, Tata McGraw Hill
	6. Sensors and Transducers, Second Edition, D. Patranabis, PHI Publishers
2.	Journals & Periodicals:
	IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
	2. IEEE Access
3.	Other Electronic Resources:
	1. https://phet.colorado.edu/
	2. https://www.scilab.org/3. https://onlinecourses.nptel.ac.in/

Course Curriculum

Academic Year 2025-26

Chemical Engineering	Course Curriculum	Academic re
Evaluation Scheme	Total Marks	
Theory:	20 marks	
Mid semester Marks		
Theory:	40 marks	
End Semester Marks		
Theory:	Attendance	05 marks
Continuous Evaluation Component Marks	MCQs	10 marks
(CEC)	Open Book Assignment	15 marks
	Article Review/Assignment/Miscellaneous Activity	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	15 marks
	Journal	05 marks
	Total	50 Marks

Mapping of PSOs & COs

PSO/CO	PSO1	PSO2	PSO3
CO1	2	2	3
CO2	2	1	3
CO3	3	3	3
CO4	3	3	3
CO5	2	1	3

Course Curriculum

Academic Year 2025-26

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	2	2	0	1
CO2	3	3	1	1	0	0	0	0	2	2	0	1
CO3	3	3	3	3	1	0	1	0	2	2	0	1
CO4	3	3	3	3	1	0	1	0	2	2	0	1
CO5	3	3	3	2	1	0	0	0	2	2	0	1

COURSE CODE	COURSE NAME	SEMESTER
BTME106	WORKSHOP	I

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
0	2	0	2	0	2	0	1

Course Pre-requisites	NIL
Course Category	Engineering Science
Course focus	Skill Development
Rationale	
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: To give basic training on fitting, carpentry, sheet metal, machine shop, and black smithy
	2: To enable students to understand and practice joining techniques.
	3: To train students to handle various machine tools.
	4: To enable students to understand basic mechanical engineering concepts.
	5: To enable students to fabricate components with their own hands.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction	20%	09
Introduction, Workshop layout, Importance of various sections/shops of		
workshop, Types of jobs done in each shop. General safety rules and		
work procedure in workshop. Measuring Instruments.		
Unit 2: Welding Theory:	20%	09
Overview of arc and spot-welding operations.		
Unit 3: Fitting Theory:	20%	09
Overview of fitting operations		

Chemical Engineering	Course Curriculum	Academic Y	ear 2025-26
Unit 4: Black smithy Theory: Overview of smithy processes		20%	09

Unit 5: Machining Theory:		09
Overview of Lathe and shaper machines.		

List Of Practical	Weightage	Contact
		hours
1: Introduction to Engineering Workshop. Know general safety rules and	7%	2
work procedure of engineering workshop		
2: Sketch the layout of engineering workshop. Study the different shops and	7%	2
types of jobs done in each shop of engineering workshop		
3: Study about basic Measuring Instruments used in workshop.	7%	2
4: Study of Arc welding machine and its accessories.	7%	2
5: Demonstrate and perform job by using Arc welding machine.	7%	2
6. Study of Fitting tools.	7%	2
7. Demonstrate and perform job by using Fitting tools	7%	2
8. Study of Black smithy tools	7%	2
9. Demonstrate and perform job by using Black smithy tools.	7%	2
10. Study of Tinsmithy tools.	7%	2
11. Demonstrate and perform job by using Tinsmithy tools.	7%	2
12. Study of Lathe machine	7%	2
13. Demonstrate different operations on Lathe machine.	7%	2
14. Study of Shaper machine.	7%	2
15. Demonstrate different operations on Shaper machine.	7%	2

Instructional Method and Pedagogy: The instructional methods and pedagogies for teaching ICT involve a combination of theoretical knowledge and practical application.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To give basic knowledge on fitting, carpentry, sheet metal, machine shop, and black smithy.	cognitive	Understand
CO 2: To enable students to understand and practice joining techniques	cognitive	Understand
CO 3: To give knowledge and train students to handle various machine tools.	cognitive	Understand
	cognitive	Understand
CO4: To enable students to understand basic mechanical engineering concepts.	cognitive	Understand
CO5: To enable students to fabricate components with their own hands.		

Learning Re	Learning Resources							
1.	Reference Books:							
	1. Hajra Choudhary, S. K., Elements of Workshop Technology, Media Promotors& Publishers Pvt. Ltd, 12thEdition, (2002).							
	2. Chapman, W.A.J., Workshop Technology, ELBS Low Price Text, Edward Donald Pub. Ltd., (1961).							
	3. Singh, D.K., Fundamentals of Manufacturing Engineering, Ane Books Pvt. Ltd, New Delhi, 2nd Edition, (2009).							
	4. Raghuvanshi, B.S., Course in Workshop Technology, Dhan Patrai & Sons, New Delhi, (1991)							
2.	Journals & Periodicals:							
	1. Journal of Manufacturing Processes							
	2. Procedia Manufacturing							
	3. Manufacturing Letters "							
3.	Other Electronic Resources:							
	http://www.weldingtechnology.org							
	http://www.piehtoolco.com/							
	http://sourcing.indiamart.com/engineering/articles/materials-used-hand-tools/							

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	00 marks	
Theory: End Semester Marks	00 marks	
Theory: Continuous		
Evaluation Component	Attendance	00 marks
Marks	MCQs	00 marks
	Open Book Assignment	00 marks
	Open Book Assignment	00 marks
	Total	00Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

Chemical Engineering

	PSO1	PSO2	PSO2
CO1	1	1	1
CO2	1	1	1
CO3	1	1	1
CO4	1	1	1
CO5	1	1	1
Avg.	1	1	1

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	2	2	3	2	0	2	0	0	2	2	3
CO2	3	3	3	3	2	0	3	0	0	3	3	3
CO3	3	2	3	3	2	0	2	0	0	2	3	3
CO4	3	1	3	3	3	0	1	0	0	1	3	3
CO5	3	2	2	3	2	0	2	0	0	2	2	3
Avg.	3	2	2.6	3	2.2	0	2	0	0	2	2.6	3

COURSE CODE	COURSE NAME	SEMESTER
BTFS108	FUNDAMENTALS OF	I
	FIRE, SAFETY, HEALTH	
	&ENVIRONMENT	

Γ	Гeaching Sch	neme (Hours	s)		Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	NIL
Course Category	Engineering Science
Course focus	Employability
Rationale	The rationale behind fire and environmental safety as a subject is to educate individuals and communities about the risks associated with fire and other environmental hazards, and to promote strategies and practices that minimize those risks.
Course Revision/ Approval Date:	24/06/2020
Course Objectives To enable the student to:	
(As per Blooms' Taxonomy)	1: Understand the fire, safety, health and environment challenges in the built and industrial environment and approaches to addressing the same.
	2: Become aware of important past incidents causing major loss of life & property and damage to environment, and their impact with respect to safety legislation and environment
	3: History and current role of Fire & EHS related legislation and role of agencies involved with implementation
	4: Understand approaches for addressing fire and EHS challenges in the industrial environment.
	5: Become familiar with current fire & safety engineering and management concepts and practices followed in the industry

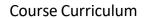
Course Content (Theory)	Weightage	Contact hours
Unit 1:	20%	8
Theory: Challenges to safety in built environment, types of hazards likely		
to cause harm (fire, burns, electric shock, falls), natural disasters, fatalities		

	Chemical Engineering Course Curriculum	Academic Yea	ar 2025-26
N.	involving hazardous environments. Important Case studies involving major incidents and their subsequent effect on safety outlook. Approach to addressing Fire & EHS challenges at organization and national level.		
	Unit 2: The concept of industrial safety, health and environment - need, nature and importance. Focus on Human resource, and the concept of importance of 'man' as central theme in safety. Concept of accident prevention, occupational health and environmental protection. Problems of Industrial safety, occupational health and environmental pollution & modern concept of SHE.	20%	05
-	Unit 3: History and role of building codes and safety legislation, concept of safety versus risk, enforcement of codes and standards, role of government agencies and emergency services in enforcing legislation, government framework and infrastructure involved in safety legislation enforcement. Role of code enforcement, plan review and approval, record keeping, public education	20%	04
	Unit 4: Industrial Fire & Safety management concepts – hazard identification and risk assessment, risk reduction and control methods. Design aspects such as segregation and separation, fire resisting construction, emergency exit arrangements, access for emergency agencies, fire protection systems, safe operational practices, maintenance and upkeep of systems, planning for emergency response. Design approaches for fire and safety, NFPA fire safety concepts tree.	20%	05
	Unit 5: Environmental Pollution Air Pollution Sources and effects of air pollution, NAAQS Basic principles of air pollution control devices Global effects of air pollution, Air Pollution due to automobiles, photochemical smog. Water Pollution: Sources and effects, Effluent standards Domestic and Industrial wastewater and treatment principles, Land pollution: - Solid waste, solid waste management by land filling, composting. Social Issues and the environment, from unsustainable to sustainable development, urban problems related to energy, water conservation, rain water harvesting, watershed management, resettlement and rehabilitation of people; its problems and concerns.	20%	08

Instructional Method and Pedagogy: The instructional method and pedagogy of the fire and safety subject typically involve a combination of theoretical knowledge, practical training, and hands-on exercises.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:	Cognitive	Understand
CO1: Students will understand the fire and EHS challenges faced in the built and industrial environment, and the current approaches taken to address the same.	Cognitive	Learn
CO2: Students will learn about major incidents which affected industrial and societal attitude towards safety.		
CO3: Students will become familiar with the history and development of fire & safety legislation, their current form and role of different agencies involved in their implementation.	Cognitive	Familiar
CO4: Students will be able to understand the different design approaches for addressing the fire & life safety challenges inbuilt and industrial environments	Cognitive	Analyse
CO5: Students will become aware of the different engineering and management concepts applied for addressing fire and safety risks in industrial scenarios.	Cognitive	Apply

Learning Re	esources
1.	Reference Books:
	Cheunisinoff Graffia, Environmental Health & Safety Management, Reprint Jaico Publishing House.
	2. Tarafdar, Industrial Safety Management
2.	Journals & Periodicals:
	 International Journal of Environmental Research and Public Health Journal of Occupational and Environmental Hygiene
3.	Other Electronic Resources: OSHA, NFPA, EPA Provides information on environmental regulations, guidelines, and resources.


Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

TUME	Chemical Engineering	Course Curriculum	Academic Year 2025-26
अविवालेल भूगारी	Theory: Continuous		

Chemical Engineering	Course Curricularii	Academic rear 202.
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
Warks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
Practical Marks		L.
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks
Project/ Industrial		
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks
	Practical understanding of the subject on the Project/Industrial.	30 marks
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks
	Attendance	10 marks
	Total	100 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	2	2	1
CO3	1	1	0
CO4	1	2	0
CO5	0	2	0
Avg.	1.2	1.6	0.4

Mapping of POs & COs

Chemical Engineering

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	1	0	1	3	2	2	2	2	1	1	2
CO2	1	3	2	3	2	2	1	1	2	1	2	2
CO3	3	1	0	1	3	2	2	1	2	1	1	2
CO4	3	1	0	1	3	2	2	1	2	1	2	2
CO5	3	1	0	1	3	2	2	1	2	1	2	2
Avg.	2.6	1.4	0.4	1.4	2.8	2	1.8	1.8	2	1	1.2	2

COURSE CODE AECC101			COURSE N NDAMENT ENGLIS	ALS OF	SI	EMESTER I	
1	Teaching Sch	neme (Hours	s)		Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	NIL
Course Category	Ability Enhancement
Course focus	Soft Skills
Rationale	English is recognized as the most widely spoken language around the world. It serves as a common language for international communication, business, diplomacy, and tourism. By studying English, individuals gain the ability to connect with people from diverse cultures and backgrounds, facilitating effective global communication.
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: To emphasize the development of listening and reading skills among learners
	2. To equip them with writing skills needed for academic as well as workplace context
	3. To enable learners of Engineering and Technology develop their basic communication skills in English
	4. To strengthen the fundamentals in English Language.
	5. To build up the confidence to communicate with the world.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Language Basics	20%	8
Parts of speech, word formation, prefix-suffix, synonyms, antonyms,		
homophones and standard abbreviations.		
Unit 2: Elementary Reading/Writing Skills		
Types of the sentences, structures of the sentences, use of phrases and		
clauses, punctuation, creative writing and coherence, comprehension,	20%	05
essay/paragraph writing, precise writing.		

Curriculum Academic Year 2025-26	
	Curriculum Academic Year 2025-26

_	ction, making an apology, accepting an a, JAM, group discussion, debate, public	20%	04
Unit 4: Practicing and Identify	8		
Tense, subject-verb agreement prepositions, modal auxiliaries, v		20%	05
Unit-5: Writing Skills & Speak	ing Skills		
Letter writing - Complaint & Le	ave, Article, Precise writing, Report		
writing, Note taking and Note m	aking, Creative Writing Introducing self,	20%	08
Interview Skills, Public Speaking	g, Debates, Role plays, Group Discussion		

Instructional Method and Pedagogy: PPT +Video+ Chalk Board

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:	Cognitive	
CO1: To emphasize the development of listening and reading skills among learners	Cognitive	Analyse
CO2. To give them knowledge of writing skills needed for academic as well as workplace context		Apply
CO3. To enable learners of Engineering and Technology develop their basic communication skills in English	Cognitive	Understand
CO4. To make them apply fundamentals of in English Language in daily life.	Cognitive	Create
CO5. To make them confident to communicate with the world.	Cognitive	Create

Learning Re	sources
1.	Reference Books:
	 Thorpe, Edgar and Showick Thorpe "Basic Vocabulary" Pearson Education India, 2012. Green, David. "Contemporary English Grammar Structures and Composition" MacMillan Publishers, New Delhi, 2010.
	3. Wren & Martin (2001), English Grammar & Composition, New York.
	Essential English Grammar Raymond Murphy (2000) Cambridge

	Journals:
	1. 'The Journal' Basic English Grammar
	2. 'Fluent U' English Language and Cultural Journal
	3. 'The Journal of English Academics'
	4. 'Elsevier' The research on language
	Periodicals:
	1. Index Noedicus: A Cumulative Index to English Language Periodicals
	2. The Illustrated English Language Periodicals
3.	Other Electronic Resources: Wordsworth - Language Software.

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	Attendance MCQs Open Book Assignment Open Book Assignment Total	05 marks 10 marks 15 marks 10 marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	1	1
CO2	1	1	1
CO3	1	1	1
CO4	1	1	1
CO5	1	1	1
Avg.	1	1	1

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	2	2	3	2	0	0	0	0	0	0	0
CO2	3	3	3	3	2	0	0	0	0	0	0	0
CO3	3	2	3	3	2	0	0	0	0	0	0	0
CO4	3	1	3	3	3	0	0	0	0	0	0	0
CO5	3	2	2	3	2	0	0	0	0	0	0	0
Avg.	3	2	2.6	3	2.2	0	0	0	0	0	0	0

Course Pre-requisites

BTCH208	ENGINEERING GRAPHICS	SEMESTER
		П

	Teaching Scheme (Hours)				Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
0	2	0	2	0	1	0	1

Nil

Course Category	Engineering Science		Engineering Science			
Course focus	Employability					
Rationale						
Course Revision/ Approval Date:	3/7/2025					
Course Objectives	To enable the student to:					
(As per Blooms' Taxonomy)	1: Cover the fundamental of engineering drawing and standards used in drawing.					
	2: Explain the students to communicate ideas isometric projection methods.	s using orthog	raphic and			
	3: Help students to use CAD software to prepare drawings.					
	4: Demonstrate the presentation of drawing using sketching and 3D modelling in CAD tool					
I	ist of Practicals	Weightage	Contact hours			
Introduction to Engineering and their significance, drawn numbering, types of line	dist of Practicals Graphics: Principles of engineering graphics ving instruments & accessories, lettering and s, dimensioning methods, basic geometric	11%				
Introduction to Engineering and their significance, draw numbering, types of line drawing, reading a drawing	Graphics: Principles of engineering graphics ving instruments & accessories, lettering and s, dimensioning methods, basic geometric introduction to projection, types of projection,	11%	hours			
Introduction to Engineering and their significance, drawnumbering, types of line drawing, reading a drawing Orthographic Projection: I st angle and 3rd angle pro Isometric Projection: Prince	Graphics: Principles of engineering graphics ving instruments & accessories, lettering and s, dimensioning methods, basic geometric introduction to projection, types of projection, bjection. Exples of isometric projection isometric scale, attions, conversion of isometric views to	11% 11%	hours 2			
1. Introduction to Engineering and their significance, draw numbering, types of line drawing, reading a drawing 2. Orthographic Projection: I 1st angle and 3rd angle pro 3. Isometric Projection: Prince isometric views, converting orthographic views and vice 4. Projection of Solids and Desprojections of solids like inclination to reference please.	Graphics: Principles of engineering graphics ving instruments & accessories, lettering and s, dimensioning methods, basic geometric introduction to projection, types of projection, eigetion. Eight of isometric projection isometric scale, ations, conversion of isometric views to be eversa velopment of Surface: Classification of solids, cylinder, cone, pyramid, and prism with its ane, development of surfaces of right regular	11% 11% 11% 11%	2 2			
1. Introduction to Engineering and their significance, draw numbering, types of line drawing, reading a drawing 2. Orthographic Projection: I 1st angle and 3rd angle pro 3. Isometric Projection: Prince isometric views, converting orthographic views and vice 4. Projection of Solids and Desprojections of solids like inclination to reference plasolids - prism, pyramid, cy	Graphics: Principles of engineering graphics ving instruments & accessories, lettering and s, dimensioning methods, basic geometric introduction to projection, types of projection, eigetion. Eight of isometric projection isometric scale, ations, conversion of isometric views to be eversa velopment of Surface: Classification of solids, cylinder, cone, pyramid, and prism with its ane, development of surfaces of right regular	11% 11% 11% 11%	2 2 2			

knowledge of the theory of CAD software, use of software in drawing,		
CAD software user interface, commands, Coordinate System, menus and		
toolbars, planes, dimensioning, saving of files, Select and erase objects,		
zoom tools, and others		
6. Basic sketching using CAD tool: Sketch entities using tools origin, points,	11%	2
lines, circle, arcs, polygons, fillets and chamfer, trim, extend and offset,		
copy, cut, delete and others		
7. Advanced sketching using CAD tool: Sketching entities using relation	11%	2
constrains, Mirror, Patterning, full definition of drawing and others		
8. Basic 3D modelling using CAD tool: Extrude, cut, drawing on different	11%	2
planes, editing, symmetric, revolving, and others		
9. Computer aided drawing sheets: Preparing drawing sheets, creating	12%	2
different views, section view, drawing templates, and others		

Instructional Method and Pedagogy: Instructional Method and Pedagogy for Engineering Graphics: Lecture-based instruction, hands-on practice, group discussions, interactive demonstrations, realworld applications, assessments with feedback, technology integration, field trips, and guest lectures facilitate comprehensive learning, critical thinking, and practical skills development, highlighting

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Recalling the fundamentals of engineering graphics by considering basic rules of drawing, dimensioning, and labelling.		Understand
CO2: Explain the principle of projection using orthographic and isometric projection.	Cognitive	Undersand
CO3: Represent the 2-dimensional drawing using CAD tool.		Create
CO4: Construct the 3-dimensional geometries using CAD tool.		Create
CO5: Apply the concept of engineering drawing by organizing drawing views and applying necessary dimensions by preparing drawing sheets		Apply
CO6: Analyse the intricate details of solid using projection of solid, sectioning of solid and development of lateral surfaces.		Analyse

Learning Re	sources
1.	Reference Books:
	Finkelstein Ellen et. al., "AutoCAD 2012 and AutoCAD LT 2012 Bible" Wiley India, New Delhi
	➤ Bhatt N.D., Panchal V.M. & Ingle P.R., Engineering Drawing, Charotar Publishing.

2.	Textbook:
	Sham Tickooet. al., "AutoCAD 2012 for engineering and designers "Dream tech press, New Delhi
	➤ Shah P.J., Engineering Graphics, S. Chand Publishing.
	Agrawal, B. & Agrawal C. M., Engineering Drawing, Tata McGraw Hill
	Publishers.
3	Journals & Periodicals
	Mechanics Based Design of Structures and Machines
	Engineering Structures
	 Journal of Computational Design and Engineering
	➤ Engineering with Computers
4	Other Electronic Resources
	https://www.udemy.com/topic/autocad/
	https://www.autodesk.com/training
	https://www.coursera.org/autodesk

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	-	
Theory: End Semester Marks	50 marks	
Practical Marks	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

Chemical Engineering

	PSO1	PSO2	PSO3
CO1	1	1	1
CO2	1	1	1
CO3	1	1	1
CO4	1	1	1
CO5	1	1	1
Avg.	1	1	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	0	0	0	0	0	0	0
CO2	3	3	3	3	2	0	0	0	0	0	0	0
CO3	3	2	3	3	2	0	0	0	0	0	0	0
CO4	3	1	3	3	3	0	0	0	0	0	0	0
CO5	3	2	2	3	2	0	0	0	0	0	0	0
Avg.	3	2	2.6	3	2.2	0	0	0	0	0	0	0

BTMA203	MATHEMATICS-II	SEMESTER
		II

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	-	1	4

Course Pre-requisites	Basic Mathematics
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1 evaluating vector calculus and their usage like Work, Circulation and Flux.
	2. used to solve differential equations and Fourier integral representation.
	3. apply effective mathematical tools for the solutions of first order ordinary differential equations.
	4. apply effective mathematical methods for the solutions of higher order ordinary differential equations.
	5. use series solution methods and special functions like Bessels' functions.

Course Content (Theory)	Weightage	Contact hours
Unit 1: First Order First Degree Differential Equation	20%	08
First ordered odes: Exact equations, Integrating factors, Linear and Bernoulli's equation, Homogeneous equation, Applications of first order equations: Orthogonal trajectories, Mixture problem, and Temperature problem.		
Unit 2: Higher order differential equation	20%	10
Higher ordered Linear ODEs with constant coefficients, Wronskians,		
Differential operators, Method of solving homogeneous equations, non-homogeneous equations, Inverse operators, Methods of solving non-		

homogeneous equations. Cauchy- Euler equations, Method of		
undetermined coefficients, Method of variation of parameters.	1	
Unit 3: Probability and Statistics:	20%	10
Definitions of probability, sampling theorems, conditional probability;	1	
mean, median, mode and standard deviation; random variables, binomial,	1	
Poisson and normal distributions.	1	
Unit 4: Multiple Integration	20%	10
Double and Triple integration, change of order of double integration,	1	
double integration in Polar form, Jacobians and change of variables	1	
formula. Applications to find area and volume.	1	
Unit 5: Vector Calculus	20%	07
Vector valued functions, gradient and directional derivatives, Divergence	İ	
and curl, Vector identities. Line Integral and Green's Theorem.	İ	

Instructional Method and Pedagogy: (Max. 100 words)

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Knowledge of Identifying and solve some ordinary differential equations.		Knowledge
CO2: To evaluate some experiments, form ordinary differential equations.		Evaluate
CO3: Analyse and solve engineering problems using Statistics	Cognitive	Understand
CO4: Apply the multiple integration in the area of engineering.		Apply
CO5. Evaluate vector valued function in the area of vector calculus.		Evaluate

Learning Resources						
1.	Reference Books:					
	Kreyszig, E., Advanced Engineering Mathematics, 8th Edition, Wiley					

	& Sons, (1999).
	Anton, H., Elementary Linear Algebra with Applications, 8th Edition, John Wiley & Sons, (1995).
2.	Textbook:
	Veerarajan T., Engineering Mathematics for first year, Tata McGraw- Hill, New Delhi, 2008.
3	Journals & Periodicals
4	Other Electronic Resources
	>

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	3	2
CO2	2	3	1
CO3	1	2	1
CO4	2	1	1
CO5	1	1	3
Avg.	2.8	1.2	1.6

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	1	0	0	1	0	1
CO2	3	2	1	2	2	0	0	1	0	1	0	0
CO3	3	2	2	2	1	0	0	1	1	1	0	3
CO4	3	2	3	3	0	0	0	1	0	1	0	2
CO5	2	1	0	0	0	1	1	0	1	1	0	1
Avg.	2.8	2	1.6	1.8	0.6	0.2	0.4	0.6	0.4	1	0	1.4

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

BTME209	ENGINEERING	SEMESTER
	MECHANICS	П

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	0	5	3	1	0	4

Course Pre-requisites	Basic knowledge of Physics and Mathematics		
Course Category	Engineering Science Courses		
Course focus	Employability		
Rationale	The subject of Engineering Mechanics holds great importance as it provides the foundation for understanding the behaviour of structures and machines, ensuring safety, efficiency, and innovation in engineering projects on local, national, and international scales.		
Course Revision/	06/07/2023		
Approval Date:			
Course Objectives	To enable the student to:		
(As per Blooms'	1: Apply systematic engineering synthesis and design processes		
Taxonomy)	2: Understand theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.		
	3: Understand theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.		
	4: Apply established engineering methods to complex engineering problem solving.		
	5: Evaluate the beam related problems		

Course Content (Theory)	Weightage	Contact hours
Unit 1: Rigid Body Statics	20%	09
Vector algebra, force systems, moment of a force about a point and about		
an axis; simplest equivalent forces and moment; free body diagram; force		
equilibrium, equations of equilibrium; problems in two dimensions. Types		
of loading, supports and reactions; evaluating internal forces in bodies; axial		
force, Planar Trusses and frames: static indeterminacy, analysis by method		

of joints and method of sections.		
Unit 2: Centre of Gravity	20%	09
Centroid of lines, plane areas and volumes, Examples related to centroid of		
composite geometry		
Unit 3: Moment of Inertia	20%	09
First and second moment of area and mass, radius of gyration, parallel axis		
theorem, product of inertia, rotation of axes and principal M.I., Thin plates,		
M.I. by direct method (integration), composite bodies.		
Unit 4: Friction		09
Types and laws of friction, impending motion problems involving large and		
small contact surfaces.		
Unit 5: Dynamics	20%	09
Kinematics and Kinetics of particles: Particle dynamics in linear &		
rectangular coordinates cylindrical coordinates and in terms of path		
variables.		

List Of Practical	Weightage	Contact hours
1: Justify law of parallelogram of forces for a coplanar concurrent force system in equilibrium.	11.1 %	2
2: Justify law of polygon of forces for a coplanar concurrent force system in equilibrium	11.1 %	2
3: Calculate the magnitude and nature of forces in members of the jibcrane.	11.1 %	2
4: Verify Lemi's theorem.	11.1 %	2
5. Verify the principle of moment using bell crank lever.	11.1 %	2
6. Verify the support reactions and verify the condition of equilibrium for a simply supported beam at ends.	11.1 %	2
7. Calculate Mass moment of inertia of a fly wheel.	11.1 %	2
8. Determine the co-efficient of static friction between 1. glass and wood; 2. wood and cloth; and 3. wood and metal. (Horizontal surface)	11.1 %	2
9. Determine the co-efficient of static friction between 1. glass and wood; 2. wood and cloth; and 3. wood and metal. (Inclined surface)	11.1 %	2

Instructional Method and Pedagogy: The course can employ a combination of lectures, interactive demonstrations, hands-on problem-solving exercises, group discussions, and case studies. Utilizing visual aids, technology integration, and real-world applications enhances student engagement, critical thinking, and practical skills development in Engineering Mechanics.

	Chemical Engineering
शिवालेन अपनि	

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand and apply the principles of rigid body statics, including vector algebra, moment calculations, and equilibrium analysis, to solve problems in two and three dimensions.		Understand Understand
CO2: Determine the centroid of lines, plane areas, and volumes, and apply the concept of centroid to solve problems involving composite geometries.	Cognitive	Chacistana
CO3: Calculate moments of inertia for various shapes and composite bodies, using the first and second moments of area and mass, and apply the parallel axis theorem and rotation of axes.		Apply
CO4: Apply the laws of friction to analyze problems involving impending motion, including those with large and small contact surfaces, as well as problems related to wedge friction.		Apply
CO5: Demonstrate an understanding of particle dynamics, including kinematics and kinetics, in rectangular coordinates, cylindrical coordinates, and in terms of path variables, and solve related problems.		Apply

Learning Re	sources
1.	Reference Books:
	 Beer, F.P., Johnston, E.R., Vector Mechanics for Engineers, Vol. 1 - Statics, Vol. 2, Dynamics, 9thEdition, Tata McGraw Hill, (2011). Meriam, J.L., Kraige, L.G., Engineering Mechanics, Vol. I Statics, Vol. 2 Dynamics, 6thEdition, John Wiley, (2008). Timoshenko, S., Young, D.H., Engineering Mechanics, McGraw Hill Inc., (1040)
	 (1940). Shames, I.H., Rao, G.K.M., Engineering Mechanics – Statics and Dynamics, Pearson 's Education, (2006). Desai and Mistry, "Engineering Mechanics", Popular Prakashan.
	 R. S. Khurmi, Engineering Mechanics S. Chand, New Delhi. D. S. Kumar, Engineering Mechanics S. K. Kataria & Sons, New Delhi Bhavikatti Mechanics of Solids, New Age publication
2	Journals & Periodicals

	Mechanics Based Design of Structures and Machines				
	Materials & Design				
	Engineering Structures				
	 Journal of Computational Design and Engineering 				
	Engineering with Computers.				
3	Other Electronic Resources				
	➤ NPTEL Online Course- Engineering Mechanics, IIT Madras				

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous Evaluation Component Marks	Attendance	05 marks			
TVACTARS	MCQs Open Book Assignment	10 marks			
	Article Review	10 marks			
	Total	40 Marks			
Practical Marks	Attendance	05 marks			
	Practical Exam	20 marks			
	Viva	10 marks			
	Journal	10 marks			
	Discipline	05 marks			
	Total	50 Marks			

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	3	2
CO2	2	3	1
CO3	1	2	1
CO4	2	1	1

CO5	1	1	3
Avg.	1.6	2	1.6

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	0	1	0	0	0	0	0	1	1	2
CO2	3	1	0	2	0	0	0	0	0	1	1	1
CO3	3	2	1	1	0	0	0	0	0	2	1	3
CO4	3	0	0	1	0	0	0	0	0	0	1	2
CO5	3	1	3	1	0	0	0	0	0	2	1	2
Avg.	3	1	0.8	1.2	0	0	0	0	0	1.2	1	2

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

BTCY205	ENGINEERING	SEMESTER
	CHEMISTRY	II

	Teaching Scheme (Hours) Teachin			g Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	0	5	3	1	0	4

Course Pre-requisites	Basic knowledge of chemistry and Mathematics
Course Category	Core
Course focus	Employability
Rationale	Chemistry is considered as basic subject for Engineering.
Course Revision/	
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1: To build a basic knowledge of the structure of chemistry.
Taxonomy)	2. To analyse scientific concepts and think critically.
	3. To review the importance and relevance of chemistry in our everyday life.
	4. To be able to utilize the methods of science as a logical means of problem solving.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Water Technology	20%	15
Chemistry of water, Types of impurities in water, Types of hardness, Units of hardness, Estimation of hardness-EDTA method, Disadvantages of using hard water for industrial purpose. Scale and sludge formation in boiler, Caustic Embrittlement-Priming and foaming. Softening of water: Ion exchange process, Lime soda process (with numerical), Zeolite process Desalination. Reverse osmosis. Drinking water and its characteristics. Numerical to calculate hardness of water		
Unit 2: Corrosion, Control and Prevention	20%	10
Introduction, Corrosion problems, Types of corrosion: Chemical Corrosion- Pilling Bedworth Rule and Electrochemical corrosion. Theory of corrosion,		
pitting corrosion, crevice corrosion, waterline corrosion. Factors affecting		
corrosion, Corrosion control methods, Corrosion inhibitors. Protective		

	Chemical Engineering
अविकालन अविका	

Coatings: Metallic coatings – Galvanizing, Tinning and electroplating – Non-metallic coatings – Chromate coating and Anodising. Powder coating – methods of application and advantages.		
Unit 3: Fuels & Combustion Fossil fuels & classification, Calorific value & its types, Determination of calorific value by Bomb calorimeter, Proximate and Ultimate analysis of coal and their significance, calculation of calorific value by Dulong's formula, Knocking, relationship between knocking & structure of hydrocarbon, Octane number, Cetane number, combustion and it related numerical problems.	20%	10
Unit 4: Lubricants Introduction, Mechanism of lubrication, Classification of lubricants, significance & determination of Viscosity, Viscosity Index, Flash & Fire Points, Cloud & Pour Points, Carbon Residue, Aniline Point, Acid Number, Saponification Number.	20%	10
Unit 5: Instrumental Techniques In Chemical Analysis: Lambert's and Beer's Law and its applications, Introduction, Principle, Instrumentation and applications of IR & UV spectroscopy, Gas Chromatography & its applications.	20%	15

List Of Practical	Weightage	Contact
		hours
1. To estimate the amount of total hardness present in the given sample of water by EDTA method.	12.5 %	2
2. To Measure the pH value Of Given Solutions.	12.5 %	2
3. To determine alkalinity of given water sample.	12.5 %	2
4. To determine the acidity of the given water sample.	12.5 %	2
5. To measure a rate of corrosion of Iron in different medium.	12.5 %	2
6. To measure viscosity of a given sample.	12.5 %	2
7. To determine flash point and fire point of a given sample.	12.5 %	2
8. To determine cloud point and pour point of a given sample	12.5 %	2

Instructional	Method a	nd Pedagogy	: (Max.	100 word	s)

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To understand hardness of water, its analysis and treatment along with its calculation.		Understand
CO2: To understand various types of corrosion and its prevention techniques.		Apply
CO3: To understand fuels, its analysis, combustion and calculation of calorific value.	Cognitive	Analyse Apply
CO4: To apply knowledge of various types of lubricants and its property determination.		, -FF.7
CO5: To understand the instrumental techniques for chemical analysis		Understand

Learning Re	esources
1.	Reference Books:
	➤ Wiley's Engineering Chemistry, Multiple Authors, Wiley International
	Engineering Chemistry, R. Gopalan
	L. H. Van Vleck; Elements of Material Science and Engineering, Addison-Wesley
	Publishing Co.
2.	Textbook:
	Engineering Chemistry, P.C. Jain, Dhanpat Rai Pub. Co.
	Engineering Chemistry, S. S. Dara, S. Chand Pub. New Delhi
3	Journals & Periodicals
	Journal of Chemical Technology, Environmental Science and Technology, Chemical Engineering Science, Energy and Fuels
4	Other Electronic Resources
	> NPTEL Online Course.

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous					
Evaluation Component Marks	Attendance	05 marks			
17241135	MCQs	10 marks			
	Open Book Assignment	15 marks			
	Article Review	10 marks			
	Total	40 Marks			
Practical Marks	Attendance	05 marks			
	Practical Exam	20 marks			
	Viva	10 marks			
	Journal	10 marks			
	Discipline	05 marks			
	Total	50 Marks			

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	1	0
CO3	1	0	1
CO4	2	1	1
CO5	1	2	0
Avg.	1.6	0.8	0.4

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	0	0	0	1	0	1	0	0	0	1
CO2	1	2	2	0	0	1	0	1	0	0	0	1
CO3	1	2	0	0	0	1	1	1	0	0	0	0
CO4	1	2	2	0	0	1	0	0	1	0	0	0
CO5	1	0	2	0	0	0	0	0	0	0	1	1
Avg.	1	1.2	1.2	0	0	0.8	0.2	0.6	0.2	0	0.2	0.6

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Course Curriculum

Academic Year 2025-26

BTCS206	COURSE NAME PYTHON PROGRAMMING	SEMESTER II
---------	-----------------------------------	----------------

Teaching Scheme (Hours)						Teaching Cre	dit
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial T			
3	2	0	40	3	1	0	4

Course Pre-requisites	Introduction to Programming
Course Category	
Course focus	Employability
Rationale	The Python syllabus aims to provide students with a strong foundation in programming using Python. It covers topics such as variables, data types, control structures, functions, file handling, object-oriented programming, and libraries. This equips students with the skills to develop applications, analyze data, and automate tasks using Python.
Course Revision/	28/6/2025
Approval Date:	
Course Objectives (As per Blooms' Taxonomy)	 To understand the nature of programming as human activity and learn and experience main components of programming process To inculcate students about main control structures of procedural programming languages To provide depth knowledge about List, Tuple & Dictionaries To aware students about python utility and basic function To make student familiar about function and its use especially for chemical engineering

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Python:		
Basic syntax and Structure of python programming		
Variables and Identifiers		
Built- In Data Types	20%	10
Logical Expressions and Operators		
If-Else, elif, Nested If-Else		
While loop, Do-while, For loop, Nested loops		
Break, Continue and pass Statements		
Installation of Python, and IDLE		
Installing Anaconda Navigator		
 Using Jupyter Notebook, Spyder & Pycharm. 		

	Chemical Engineering	Course Curriculum	Academic	: Year 2025-26
Unit 2	: Features of Python			
•	Types of functions, Func Anonymous functions, Glob String Manipulation - access slices and Function and Meta Tuple: Introduction, accessing	sing Strings, Basic Operations, String hods. ng tuples, Operations. accessing values in dictionaries,	20%	9
•	Properties.	g values in sets, Working with sets, d Programming, Abstract Data Types incapsulation and Information		
Unit 3	Reading from a file Writing to a file Other Operations on Files Dates and Time: Basic date a Different time formats Converting between formats Parsing date/time information	and time classes , Formatting dates and times,	20%	7
Unit 4	: Python For Visualization &	z Plotting		
•	NumPy for vector/matrix op	erations (e.g., stoichiometry)		
•	Pandas for handling chemica	ıl lab/plant data tables		
•	•	ing graphs (e.g., conversion vs. time)		
	2d and 3d plotting using Ma			
•	Introduction to SciPy for sol	•	20%	7
	Unit 5: Application o	f Python programming		
•	Working with CoolProp, Syn	mPy, ChemPy libraries		
•	Calculating entropy, enthalp			_
•	Curve fitting experimental d		20%	7
•	· · · · · · · · · · · · · · · · · · ·	Ferential Equation ODE Solvers.		
•	Introduction of AI/ML & Io			
	 AI-powered control 	-		
	using IoT based sens			
	 Corrosion prediction 	using AI algorithms and IoT Sensors.		

Chemical Engineering

	List of Practical	Weightage	Contact hours
b) c)V d)	Write a code showing the working of all Logical Expressions and Operators. Write a code showing the all Built- In Data Types and Usage of input output statements. Write a code showing the working of if else & nested if else. Write a code showing the working of while, do-while and for loop. Design a simple calculator using elif.	20%	4
a) b) c) d) e)	Write a code to display greatest of three numbers using user defined function. Write a code to display the factorial of a number using recursive function. Write a code to display all the string manipulation functions. Write a code to display the working of lists, tuples, dictionary, sets with its associated methods & functions. Write a code to display the student details using a student class and its appropriate methods.	20%	4
	Write a code to show working of all the file operations Write a code to show working of all the Date and Time classes	20%	2
4. a) b)	Given the lists $x = \text{np.arange}(11)$ and $y=x^2$, create a 2 by 3 subplot where each subplot plots x versus y using plot, scatter, bar, loglog, semilogx, and semilogy. Title and label each plot appropriately. Use fft and ifft function from numpy to calculate the FFT amplitude approximate and inverse. FFT to obtain the original signal. Plot both	20%	2
c) d)	spectrum and inverse FFT to obtain the original signal. Plot both results. Time the fft function using this 2000 length signal. Use numpy.linalg.solve to solve the following equations. $4x_1+3x_2-5x_3=2$ $-2x_1-4x_2+5x_3=5$ $8x_1+8x_2=-3$ Compute the root of the function $f(x)=x_3-100x_2-x+100$ using f_solve.		
c)	Take any simple equation for each.	20%	2

Chemical Engineering

Instructional Method and Pedagogy:

Lecture-based instruction, Project based learning, Flipped Classroom, Case Studies, Problem based learning, Collaborative Learning

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Able to understand basics of python programming	Cognitive	Understand
CO2: Able to understand working of strings, list, tuples, sets and dictionaries.		Understand
CO3: Comprehend about working of Files and Date-Time classes.		Comprehend
CO4: Design python application for visualization and plotting. CO5: Apply in development of real time		Design
applications of Chemical Engineering.		Apply

	Learning Resources								
1.	Textbooks:								
	1. John V Guttag. "Introduction to Computation and Programming Using Python",								
	Prentice Hall of India								
	2. R. NageswaraRao, "Core Python Programming", dreamtech								
	Reference Books:								
	1. Wesley J. Chun. "Core Python Programming - Second Edition", Prentice Hall								
	2. Kenneth A. Lambert, "Fundamentals of Python – First Programs", CENGAGE								
	Publication								
	3. Luke Sneeringer, "Professional Python", Wrox								

Evaluation Scheme	Total Marks
Theory: Mid semester	20 marks
Marks	
Theory: End Semester	40 marks
Marks	

Chemical

Engineering

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	2	3
CO2	1	2	3
CO3	1	2	3
CO4	1	2	3
CO5	1	2	3

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	0	1	3	0	0	0	0	0	0	2
CO2	1	0	1	1	3	0	0	0	0	0	0	2
CO3	1	0	1	1	3	0	0	0	0	0	0	2
CO4	1	0	2	1	3	0	0	0	2	1	0	2
CO5	1	2	3	1	3	0	1	0	3	2	0	2

AECC201	COMMUNICATION	SEMESTER
	SKILLS IN ENGLISH	П

	Teaching Sch	neme (Hours)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	Basic English Grammar & Intermediate communication skills
Course Category	Ability Enhancement Compulsory Course
Course focus	Employability and Skill Development
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1: To know the process of communication and its components.
Taxonomy)	2: To improve the language skills i.e. Listening Skills, Speaking Skills, Reading Skills and Writing Skills.
	3: Construct basic and intermediate skills in English language.
	4: To enhance phonetic competence, comprehension skills, presentation skills, group discussion skills etc.
	5. To build confidence for communicating in English and create interest for the life-long learning of English language.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Communicative Skills	20%	06
Basics of Communication, Verbal & Non-verbal Communication, Barriers		
to Effective Communication, Strategies of Effective Communication		
Unit 2: Grammar & Vocabulary	20%	06
Types of sentences, Synonyms, Antonyms, Tenses - Past, Present & Future,		
Homophones, Modals, Verb forms, Phrasal Verbs, Error correction,		
commonly misused words, technical term.		
Unit 3: Listening & Reading Skills	20%	06
Definitions (Listening & Reading), Types of Listening, Barriers to Effective		

Chemical Engineering

Listening, Traits of a Good Listener, Types of Reading, Techniques of		
Effective Reading, Reading Tasks (Critical & Inferential).		
Unit 4: Writing Skills & Speaking Skills	20%	06
Letter writing - Complaint & Leave, Article, Precise writing, Report		
writing, Note taking and note making, Creative Writing Introducing self,		
Interview Skills, Public Speaking, Debates, Role plays, Group Discussion.		
Unit 5: ICT/ Digital/ E-Skills	20%	06
Computer Assisted Language Learning (CALL), Mobile Assisted Language		
Learning (MALL), Emails, Blogs, Digital/ E-Portfolio, Filling Online		
Application Forms		

Instructional Method and Pedagogy: (Max. 100 words)

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To enable learners, develop their basic communication skills in English.		Understand
2: To make them understand with writing skills needed for academic as well as workplace context.		Understand
3: To apply the subject knowledge for professional communication at world level.	Cognitive	Apply
4: To create corporate communicational attitude in students.		Create
5: To apply digital communication using technological modules and expertise.		Apply

Learning Resources Reference Books: 1. ➤ Horpe, Edgar and Showick Thorpe "Basic Vocabulary" Pearson Education India, > Green, David. "Contemporary English Grammar Structures and Composition" MacMillan Publishers, New Delhi, 2010. Wren & Martin (2001), English Grammar & Composition, New York. Mudambadithaya G.S., (2002) English Grammar and composition.

Chemical Engineering

	➤ Lupton, Mary Jane (1998). Maya Angelou: A Critical Companion. Westport:
	Greenwood Press. ISBN 978-0-313-303225.
	➤ Booher, Diana. (2004), Booher's Rules of Business Grammar, OUPUr, Penny,
	(2002), Grammar Practice Activities, OUP
2.	Textbook:
	Murphy, Raymond "Murphy's English Grammar with CD" Cambridge University
	Press, 2004
3	Journals & Periodicals
	The Journal' Basic English Grammar
	Fluent U' English Language and Cultural Journal
	➤ The Journal of English Academics'
	➤ Elsevier' The research on language
	Index Noedicus: A Cumulative Index to English Language Periodicals
	The Illustrated English Language Periodicals
4	Other Electronic Resources
	➤ Wordsworth - Language software

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
IVIAI KS	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

Mapping of PSOs & COs

Chemical Engineering

	PSO1	PSO2	PSO3
CO1	1	1	1
CO2	1	1	1
CO3	1	1	1
CO4	1	1	1
CO5	1	1	1
Avg.	1	1	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	0	0	0	0	0	0	0
CO2	3	3	3	3	2	0	0	0	0	0	0	0
CO3	3	2	3	3	2	0	0	0	0	0	0	0
CO4	3	1	3	3	3	0	0	0	0	0	0	0
CO5	3	2	2	3	2	0	0	0	0	0	0	0
Avg.	3	2	2.6	3	2.2	0	0	0	0	0	0	0

COURSE CODE	COURSE NAME	SEMESTER
BTMA301	MATHEMATICS-III	Ш

	Teaching Scheme (Hours)				Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	0	1	4

Course Pre-requisites	Advance Mathematics
Course Category	Basic Sciences
Course focus	
Rationale	
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 Understand computations involving complex numbers. Understand the behavior of complex functions as compared to real functions. Study periodic functions and their representations as series. Introduce students to partial differential equations. Apply the concepts of Laplace and Fourier transforms.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Complex Analysis	20%	10
Theory: Complex Analysis Complex number, polar form and triangle		
inequality. Function of a complex variable, Elementary functions,		
Definition and properties of analytics functions; Cauchy-Riemann		
equations.		
Unit 2: Complex Integration	20%	06
Theory: Cauchy's integral theorem and its applications.; Regular and		
irregular singular points, Residues and the Cauchy residue formula;		
Evaluation of improper integrals.		

Unit 3: Partial Differential Equations	20%	10
First order partial differential equations, Formation of partial differential equations from given solutions, Four standard forms of non-linear first order equations. Application of first order partial differential equations:		
One dimensional Heat and Wave equation, Two-dimensional Heat equation.		
Unit 4: Fourier Series	20%	06
Theory: Fourier series, Half-ranged cosine and sine series.		
Unit 5: Laplace Transform	20%	13
Theory: Laplace and Inverse Laplace transforms, Shifting theorems,		
Convolution theorem, Laplace transform of Derivative and Integration,		
Solution of linear ODE's using Laplace transform. Initial and boundary value		

Instructional Method and Pedagogy: Chalk-Duster and Notes

Course Outcomes:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to: CO1: Understand functions involving complex numbers.		Understand
CO2: Compute some real improper integrals using techniques of complex functions. CO3: Expand one variable functions in Fourier series.	Cognitive	Evaluate Create
CO4: Solve some most important partial differential equations occurring in engineering applications.		Apply
CO5: Select and combine the necessary Laplace transform techniques to solve second-order ordinary differential equations involving the Dirac delta (or unit impulse).		Apply

Chemical Engineering

Learning Re	Learning Resources							
1.	 Reference Books: Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008. Kreyszig, E., Advanced Engineering Mathematics, 8th Edition, John Wiley & Edition, 1999. Boyce, W.E., and DiPrima, R., Elementary Differential Equations, 8th Edition, John Wiley Sons, (2005). 							
2.	Journals & Periodicals:							
3.	Other Electronic Resources:							

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous	Attendance	05 marks
Evaluation Component Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	0	0
CO2	2	0	0
CO3	1	0	0
CO4	2	1	0
CO5	2	1	0
Avg.	1.6	0.4	0

Mapping of POs & COs

Chemical Engineering

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	0	0	0	1	0	0	1	0	2
CO2	1	1	0	0	1	0	0	0	0	1	0	1
CO3	2	1	0	0	0	0	0	0	0	1	0	1
CO4	2	2	2	1	2	0	1	1	1	1	0	2
CO5	3	2	2	2	2	0	0	1	1	1	0	2
Avg.	1.8	1.6	1	0.6	1	0	0.4	0.4	0.4	1	0	1.6

COURSE CODE	COURSE NAME	SEMESTER
BTCH310	FLUID FLOW	III
	OPERATIONS	

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	0	5	3	2	0	4

Course Pre-requisites	Mathematics I & II	
Course Category	Professional Core	
Course focus	Employability	
Rationale	international relevance	
Course Revision/	24-04-2017	
Approval Date:	21-03-2023	
	29-05-2025	
Course Objectives	To enable the student to:	
(As per Blooms'	1: Impart fundamental knowledge in fluid flow phenomena.	
Taxonomy)	2: Understand the basics equations of fluid flow phenomena.	
	3: Introduce design of fluid transporting systems.	
	4: Provide the clear understanding of pumps, blowers, compressors and fans.	
	5: Introduce compressible fluid system.	

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to Fluid Mechanics	15%	7
Introduction, concept of continuum, ideal & real fluids, properties of fluids. Fluid statics & its applications: Manometers, pressure measurement devices, gravity decanters & Centrifugal decanters.		
Introduction to Fluid dynamics, concept of viscosity, classification of fluid streams, stream lines, average velocity, mass velocity, velocity field, velocity gradient etc. Rheology of fluids, Newtonian and Non-Newtonian fluids & Reynolds' experiment.		

Chemical Engineering	Course Curriculum	Academic Year 2025-26
Init 2: Basic Equations of Fluid	Flow	

Chemical Engineering Course Curriculum	Academic Yea	ar 2025-26
Unit 2: Basic Equations of Fluid Flow Introduction to basic equations of fluid flow, Bernoulli equation and its application. Reynolds number and its significance, Laminar & Turbulent flow, Concept of Boundary layer & thickness of boundary layer, wake & eddy formations, In- compressible flow in pipes & channels, Frictional losses in closed channels and pipe fittings, contraction & expansion losses, power requirement for flow. Friction factor — Hagen Poiseuille equation, friction loss in non-circular conduits, friction factor chart- Moody diagram.	25%	12
Unit 3: Metering Devices & Introduction to Compressible Fluids Pipe, pipe- standards, fittings, pipe joints, optimum pipe size, valves, types, constructional features, function, steam traps & control valves, Pressure drop in pipe. The displacement and current meters, variable area meter, Orifice meter, venturimeter, flow nozzles, Rotameter, weirs and notches, Pitot tube, velocity meter - Anemometer, turbine flow meter, current meters, hot wire anemometer, laser doppler anemometry, flow visualization. Study of Fans, Blowers, ejectors, compressors and surging issues. Introduction to compressible flow through pipes and nozzles, isothermal, isentropic & adiabatic flow.	30%	15
Unit 4: Fluidization Conditions for Fluidization, Types of fluidization, Geldart classification of particles. Minimum fluidization velocity, Pressure drop. Particulate and bubbling fluidization. Applications of fluidization. Slurry and pneumatic transport. Flows through packed bed-Ergun equation, terminal velocity.	15%	5
Unit 5: Agitation & Mixing Agitation & Mixing of liquids, Purpose of agitation, Different types of agitators and their selection & criteria impellers, propellers, flow number, power number dimensionless groups, power required calculation for agitation, Scale up of agitated vessel.		6

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

	Chemical Engineering
370 M	

List of Practical	Weightage	Contact hours
1. To measure the pressure between two points by U-tube manometer for variable flow rate.	10	2
2. To measure the pressure between two points by U-tube manometer for variable cross-sectional area.	10	2
3. To find the behaviour of Flow-Laminar and Turbulent and its visualization on Reynolds Apparatus	10	2
4. To validate Bernoulli's Theorem as applied to the flow of water in tapering circular duct.	10	2
5. To calibrate and study Rotameter	10	2
6. To calibrate and study Venturimeter by determining the co-efficient of discharge	10	2
7. To calibrate and study Orificemeter by determining the co-efficient of discharge	10	2
8. To understand working principle of pitot tube and to measure the velocity of flow	10	2
9. To confirm the Head loss predicted by a pipe friction, associated with flow of water through a given pipe	10	2
10. To determine the Coefficient of discharge of rectangular Notch	10	2

Course Outcomes:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: Understand the fundamentals of fluid flow phenomena.		Remember
CO2: Design of pipeline systems, Centrifugal pump and mixing systems.	Cognitive	Create
CO3: Knowledge of metering devices.		Apply
CO4: Knowledge of fluidization.		Understand
CO5: Knowledge of compressible systems.		Understand

Learning Re	esources
1.	 Reference Books: W. L. Mc Cabe, J. C. Smith, P. Harriot, "Unit Operations of Chemical Engineering", 7th Edition, McGraw Hill, (2006). J. M. Coulson & J. F. Richardson, "Chemical Engineering Vol. I", 6th Edition, Butterworth Heinemann Publications, (2004). G. S. Sawhney, 'Fundamentals of fluid mechanics', 2nd Edition, I. K. International.
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous	Attendance	05 marks
Evaluation Component Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Chemical Engineering Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	2	1
CO3	2	2	1
CO4	1	1	0
CO5	1	1	0
Avg.	1.6	1.2	0.4

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None **Mapping of POs & COs**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	0	0	0	0	1	1	1	0	0	0	1
CO2	2	2	2	1	0	0	0	1	1	0	0	1
CO3	2	2	1	1	1	1	0	0	0	0	0	1
CO4	2	0	1	0	1	0	0	1	0	0	0	0
CO5	2	0	1	0	1	0	0	1	0	0	0	0
Avg.	2	0.8	1	0.4	0.6	0.4	0.2	0.8	0.2	0	0	0.6

COURSE CODE	COURSE NAME	SEMESTER
BTCH303	APPLIED CHEMISTRY	III

	Teaching Sch	neme (Hours)	urs) Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
4	2	0	6	4	2	0	5

Course Pre-requisites	Engineering Chemistry
Course Category	Professional Core
Course focus	
Rationale	
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Familiarize students with little knowledge of nuclear science and its application.
	2: Impart sound knowledge in the different fields of physical chemistry.
	3: Study various analytical instruments to understand the characteristics of different materials.
	4: Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems.
	5: Understand green chemistry and its importance in the field of chemical aspects.

Course Content (Theory)	Weightage	Contac t hours
Unit 1: : Surface chemistry	15%	10
Adsorption (physical and chemical adsorption), Adsorption isotherms (Freundlich and Langmuir adsorption isotherm equations), BET isotherm (qualitative), Application in heterogeneous catalysis. Colloids: Classification of colloids, preparation, purification and properties of colloids, Action of soap, Industrial applications of colloidal systems.		

Unit 2: Electro Chemistry Introduction, half reaction, electrode potential, Nernst's equation, Electro chemical cell, type of electrodes, Reference electrodes, Faraday's Law of Electolysis, buffer solution, buffer capacity, Handerson-Hesselblatch equation for acidic and basic buffer with numerical.	15%	10
Unit 3 Inorganic Chemistry Common metal properties Radioactivity and Nuclear chemistry: Radioactivity, types of radiations, rate of radioactive decay, nuclear reactions, Fission and Fusion reactions, Nuclear reactors, Nuclear hazards and nuclear waste disposal. Catalysis: Homogeneous Lewis acidbase catalysts, organometallic catalysts and industrially examples. Heterogeneous catalysts basic concepts and industrial examples.	20%	12
Unit 4: Green chemistry Mechanisms and recent advances (green chemistry, catalysis, etc.) of following processes: Alkylation and acylation, e.g. alkylation of benzene, phenols, etc. Halogenation, e.g. chlorination of toluene Nitration and sulfonation, e.g. nitration, sulfonation of benzene, etc. Hydrogenation and reductive alkylations, e.g. hydrogenation of nitrobenzene, reductive alkylation reactions of anilines, etc. Oxidation, e.g. oxidation of xylenes, etc. Polymerization, e.g. polyethylene, polypropylene, polyester and nylon, etc.	30%	20
Unit 5: Analytical chemistry Statistical Aspects, Molecular and atomic spectroscopy method. Thermal & Chromatographic methods.	20%	8

List of Practicals	Weightage %	Contact hours
1: To determine the adsorption isotherm of acetic acid by activated charcoal	10	2
2: Conductometric titration: Strong acid vs Strong base.	10	2
3. Conductometric titration: Strong acid vs weak base.	10	2
4. pH metric titration: Strong acid vs Strong base.	10	2
5. To study about effect of temperature on rate of reaction	10	2
6. To study about effect of concentration on rate of reaction.	10	2

7. Preparation of para nitro acetanilide from acetanilide	10	2
8: Preparation of para bromo acetanilide from acetanilide.	10	2
9. Preparation of chrome alum.	10	2
10. To study about spectrophotometer.	10	2

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

Course Outcomes:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: Understand the various aspects of physical chemistry		Remember
CO2: Learning about electrochemistry		Understand
CO3: Learn about nuclear chemistry, nuclear reactor and its application in various power generation field	Cognitive	Understand, apply
CO4: Understand about the green chemistry and the importance of it in various fields		Create
CO5: Learn the various analytical methods used to determine property and quality of the material		Analyse

Learning Re	esources
·	 Reference Books: Essential of Physical Chemistry, B.S.Bahl, G.D. Tuli and Arun Bahl, S. Chand and Co. Ltd. Inorganic Chemistry, P. L. Soni, S. Chand & Sons Instrumental Methods of Analysis by Willard, Merritt and Dean EWP Principles of Physical Chemistry, B.R.Puri, L.R.Sharma and M.S.Pathnia, Vishal Pub. Co. Instrumental Methods of Analysis, B. K. Sharma
2.	Journals & Periodicals: Asian Journal of green chemistry.

3.	Other Electronic Resources:
	NPTEL courses

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous Evaluation Component Marks	Attendance	05 marks			
Waiks	MCQs	10 marks			
	Open Book Assignment	15 marks			
	Article Review Total	10 marks 40 Marks			
Practical Marks					
	Attendance	05 marks			
	Practical Exam	20 marks			
	Viva	10 marks			
	Journal	10 marks			
	Discipline	05 marks			
	Total	50 Marks			

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	0
CO2	2	1	0
CO3	2	1	0
CO4	2	1	0
CO5	2	1	0
Avg.	2	1	0

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	0	0	0	1	0	0	1	0	2
CO2	1	1	0	0	1	0	0	0	0	1	0	1
CO3	2	1	0	0	0	0	0	0	0	1	0	1
CO4	2	2	2	1	2	0	1	1	1	1	0	2
CO5	3	2	2	2	2	0	0	1	1	1	0	2
Avg.	1.8	1.6	1	0.6	1	0	0.4	0.4	0.4	1	0	1.6

COURSE CODE	COURSE NAME	SEMESTER
BTCH304	PROCESS	III
	CALCULATIONS	

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	0	1	4

Course Pre-requisites	None
Course Category	Professional Core
Course focus	
Rationale	
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 Understand the Laws of Conservation of Mass and Energy. Understand the concept of Stoichiometry, Block Diagrams, Process Flow Diagrams and Piping & Instrumentation Diagrams. Carryout material balance of systems like single & multiple step processes, recycle, purge and bypass streams of different industries with or without chemical reactions. Do energy balance of different systems with and without chemical reactions. Apply the concept of material and energy balances in actual industrial operations.

Course Content (Theory)	Weightage	Contact hours
Unit 1: : Dimensions & Units	20%	7
Introduction to process calculation, Concept of Unit:		
Fundamental & Derived Dimensional consistency, Different ways of expressing units of quantities & physical constant, Unit conversion & its significance, Introduction to block diagram, PFD and P&ID		

Unit 2: Material Balance without chemical reaction	20%	10
Calculation of mole, molecular weight, equivalent weight etc., Composition of gaseous mixture, liquid mixture, solid mixture Material balance around equipment: Evaporator, Extractors, Distillation, Absorber, dryer, Mixing etc., Humidification, Use of Psychrometric charts and determination of humidity.		
Unit 3: Material Balance with chemical reaction & Recycle Operations	20%	10
Concept of limiting and excess reactant, Yield, Conversion, Selectivity etc., Material balance involving reactions with special reference to fertilizers, petrochemicals, combustion etc. Importance of Purge, Bypass and Recycle streams, Calculation based on purge, bypass & recycle stream in process		
Unit 4: Introduction to Energy Balance	20%	8
First law of thermodynamics and its application, Heat capacity of gases & gaseous mixtures, Heat capacity of liquids and solids, Equation of state		
Unit 5: Energy Balance	20%	10
Enthalpy changes accompanying chemical reaction: Heat of reaction, Heat of formation, Heat of combustion, Heat of mixing, Dissolution of solids etc. Various examples to calculate heat change with or without phase change. Enthalpy- concentration charts and its application, Adiabatic and non- adiabatic reaction, Theoretical and actual flame temperature.		

List of Tutorials	Weightage *	Contact hours*
1: Problems based on units & conversions in MS Excel/Scilab.	12	1
2: Problems based on calculation of mole, composition of mixture in MS Excel/Scilab.	12	1
3. Problems based on material balance without chemical reaction in MS Excel/Scilab.	13	1
4. Problems based on material balance with chemical reaction in MS Excel/Scilab.	13	1
5. Problems based on purge, bypass & recycle stream in MS Excel/Scilab.	12	1

6: Problems based on first law of thermodynamics and equation of state in MS Excel/Scilab.	12	1
7: Problems based on heat capacity of mixtures in MS Excel/Scilab	13	1
8: Problems based on enthalpy changes in MS Excel/Scilab.	13	1

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

Course Outcomes:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: To understand different system of units and dimensions with conversion		Remember
CO2: Describe the concepts for expressing compositions and behaviour of different gases and solutions	Cognitive	Understand
CO3: Sketch block diagrams of various chemical process and can solve material balance problems	C	Apply
CO4: Use fundamentals of thermodynamics and can solve energy balance problems.		Apply
CO5: Do material balance and examine and solve complex problems of industries related.		Evaluate

1. Reference Books: • Stoichiometry", B.I. Bhatt, S. B. Thakore, McGraw Hill Education, 5th Edition, 2010. J. M. Coulson & J. F. Richardson, "Chemical Engineering Vol. I", 6th Edition, Butterworth Heinemann Publications, (2004). • Basic Principles & Calculations in Chemical Engineering", David M. Himmelblau, James B. Riggs, PHI Learing Pvt. Ltd, 7th edition, 2006. • Elementary Principles of Chemical Processes", Richard M. Felder, Ronald W. Rousseau, Wiley, 3rd Edition, 2004.

2.	Journals & Periodicals:
	Journal of Chemical Education, ACS Publications.
	Journal of American Chemical Society, ACS Publications.
3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
Warks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	2	3
CO2	3	2	2
CO3	3	3	3
CO4	3	3	3
CO5	3	3	3
Avg.	3	2.6	2.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	1	1	1	2	3	3	3
CO2	3	3	2	2	2	2	1	1	2	2	2	3
CO3	2	2	3	3	3	2	2	1	2	2	2	3
CO4	2	2	3	3	3	3	3	3	3	2	2	3
CO5	1	1	2	2	3	3	3	2	2	3	2	3
Avg.	2.2	2.2	2.4	2.2	2.6	2.2	2	1.6	2.2	2.4	2.2	3

COURSE CODE BTCH305	COURSE NAME MECHANICAL OPERATIONS	SEMESTER III
------------------------	---	-----------------

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Tot			
4	2	0	6	4	2	0	5

Course Pre-requisites	Mathematics I & II, Basics of Chemistry
Course Category	Professional Core
Course focus	
Rationale	
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: familiarize the student with characterization handling, storage of solids and screening
	2: familiarize the student with Principles of size reduction and size reduction equipment's
	3: familiarize the student with the methods of separations based on motion of a particle through fluids
	4: familiarize the student with filtration operation and industrial filters
	5: familiarize the student with the concept of fluidization and its applications

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Solid particles and their flow properties	20%	10
Characterization of solid particles and mixed particles (morphology and size distribution), particle size measurement techniques, specific surface of mixture, screen analysis of particles. Properties of masses of particles. Storage, conveyors and elevators Transportation and of solids including Pneumatic transport and hydraulic transport of solids and their safety aspects. Mixers for cohesive solids as well as for free flowing solids.		

Unit 2: Size reduction & size enlargement of solids	20%	18
Purpose and Principles of comminution, energy and power requirements in comminution, crushing efficiency, laws of comminution: Rittinger's law, Kick's law, Bond crushing law and work index. Types of size reduction equipments, Crushers: jaw crushers, gyratory crushers Grinders: hammer mills and impactors, tumbling mills, action in tumbling mills Ultrafine grinders: fluid energy mills. Cutting machines: knife cutters. Open-circuit and closed-circuit operation Size enlargement: by agglomeration, briquetting, compacting, granulation, tableting, etc.		
Unit 3: Particle size separation	20%	8
By Screening: screening equipment: stationary screens and grizzlies, gyrating screens, vibrating screens, comparison of ideal and actual screens, blinding of screen, screen efficiency, capacity and effectiveness of screens Numericals on efficiency of screen		
Unit 4: Separations based on motion of a particle through fluids	20%	14
Terminal settling velocity, settling under Stoke's law regime and Newton's law regime. Gravity settling processes, gravity classifiers, sorting classifiers, sink-and-float methods, differential settling methods, jigging, Wilfly table, elutriation, Cyclones, hydrocyclones, centrifugal decanters and froth flotation. Clarifiers and thickeners, construction and working of lamella clarifier, flocculation, batch sedimentation, rate of sedimentation. Equipment for sedimentation: thickeners. Sedimentation zones in continuous thickeners. Clarifier and thickener design, centrifugal sedimentation, Electrostatic & magnetic separation processes. Solid gas separation and Gas cleaning equipment: Bag filters, electrostatic precipitator, scrubbing & safety aspects of the equipment's.		
Unit 5: Filtration	20%	10
Types of filtration, principles of cake filtration, constant pressure, constant rate filtration, compressible and in- compressible cakes, filter media resistance and cake resistance, filter media, filter aids, filtration equipment's including belt filter(batch, continuous) and their selection criteria & safety aspects, Washing of filter cakes.		

List of Practicals	Weightage	Contact hours
1. Sieve analysis	12	2
2. Jaw crusher.	12	2
3. Roll crusher	13	2
4. Ball mill / Hammer mill	13	2

12	2
12	2
13	2
13	2
	12 12 13

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

Course Outcomes:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to: CO1: Understanding of various fundamental operations, Transportation and properties of solid particles		Remember
CO2: Application of operations include size reduction, and enlargement.	Cognitive	Apply
CO3: Design aspects of screening device and its understanding of its types.		Apply
CO4: Understanding of various separation operations and application of it.		Understand
CO5: Understanding of filtration operation and application of suitable filtration operation in process.		Apply

Learning H	Resources
1.	Reference Books:
	 W. L. Mc Cabe, J. C. Smith, P. Harriot, "Unit Operations of Chemical Engineering", 7th Edition, McGraw Hill, (2006).
	• J.M. Coulson & J.F. Richardson 'Chemical Engineering' Vol 2, 6th Ed. Elsevier, (2003).
	• G.G. Brown Ed. 'Unit Operations' John Wiley & Sons, (1950).
2.	Journals & Periodicals:
3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous					
Evaluation Component Marks	Attendance	05 marks			
Warks	MCQs	10 marks			
	Open Book Assignment	15 marks			
	Article Review	10 marks			
	Total	40 Marks			
Practical Marks					
	Attendance	05 marks			
	Practical Exam	20 marks			
	Viva	10 marks			
	Journal	10 marks			
	Discipline	05 marks			
	Total	50 Marks			

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	2	2	0
CO3	2	2	0
CO4	2	1	0
CO5	2	1	0
Avg.	2	1.4	0.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	0	1	1	1	1	0	1	1
CO2	2	1	1	1	0	1	1	1	0	0	0	1
CO3	1	2	3	1	1	1	1	1	1	0	1	1
CO4	1	0	1	0	0	1	1	1	0	0	0	0
CO5	1	0	1	0	0	1	1	1	0	0	0	0
Avg.	1.4	1	1.6	0.6	0.2	1	1	1	0.4	0	0.4	0.6

COURSE CODE	COURSE NAME	SEMESTER
AECC301	ENTREPRENEURSHIP	III
	DEVELOPMENT	

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	Knowledge and skills of entrepreneurship
Course Category	Humanities and Social Sciences
Course focus	26-04-2021
Rationale	
Course Revision/ Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Develop skills for evaluating, articulating, refining, and pitching a new product or service offering.
	2: Identify the elements of success of entrepreneurial ventures.
	3: Analyze Feasibility of the project (Financial and Non-Financial) and interpret business plan.
	4: Demonstrate and present successful work, collaboration and division of tasks in a multidisciplinary and multicultural team.
	5: Demonstrate understanding and application of the tools necessary to create sustainable and viable Businesses.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Entrepreneurship	20%	6
Concept, knowledge and skills requirement; characteristic of successful entrepreneurs; role of entrepreneurship in economic development; entrepreneurship process; factors impacting emergence of entrepreneurship; managerial vs. entrepreneurial approach and emergence of entrepreneurship. Entrepreneurial Motivation.		

Unit 2: Starting the Venture	20%	6
Creativity and Entrepreneurship, Steps in Creativity; Product Design & Influencing Factors (Legal, Ethical & Environmental); Generating business idea –sources of new ideas, methods of generating ideas, creative problem solving, opportunity recognition; environmental scanning, competitor and industry analysis		
Unit 3: Feasibility Study (Non-financial Aspects)	20%	6
Market feasibility, Technical feasibility, operational feasibility, Legal feasibility, Human Resource Feasibility, Supply Feasibility.		
Unit 4 Feasibility Study (Financial Aspects)	20%	6
Cost classification- Fixed vs. Variable; Cost Determination- Material, Labour, Overheads; Product Profitability- Concepts of Break-even, Margin of Safety, Angle of Incidence, Key-factor, Profit-Volume ratio; Balance Sheet & Profit & Loss Account- Concepts & Structure; Budgeting; Financing Schemes from Government, specially schemes for women; Venture Capital & Angel Investing		
Unit 5 Detailed Project Report & Business Plan	20%	6
Project Report- components; Preparation of Business Plan; Pitching the Business Plan, Attracting Angel Investors. (A group of THREE students will prepare a DPR, and Business Plan on selected product or service in the course as a Project/Assignment)		

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

Course Outcomes:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to: CO1: Develop skills for evaluating, articulating, refining, and pitching a new product or service offering.		Create
CO2: Analyze the elements of success of entrepreneurial ventures.	Cognitive	Anlayse
CO3: Analyze Feasibility of the project (Financial and Non-Financial) and interpret business plan.		Anlayse

CO4: Develop present successful work, collaboration and division of tasks in a multidisciplinary and multicultural	
team.	Create
CO5: understand the application of the tools necessary to create sustainable and viable Businesses.	Understand

Learning Re	esources
1.	 Reference Books: Holt DH. Entrepreneurship: New Venture Creation. Kaplan JM Patterns of Entrepreneurship. Gupta CB, Khanka SS. Entrepreneurship and Small Business Management, Sultan Chand & Sons.
2.	Journals & Periodicals: International Journal of Entrepreneurship.
3.	Other Electronic Resources: https://innovation-entrepreneurship.springeropen.com/

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	Attendance MCQs Open Book Assignment Article Review Total	05 marks 10 marks 15 marks 10 marks 40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO2
CO1	3	2	3
CO2	3	2	2
CO3	3	3	3
CO4	3	3	3
CO5	3	3	3
Avg.	3	2.6	2.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	1	1	1	2	3	3	3
CO2	3	3	2	2	2	2	1	1	2	2	2	3
CO3	2	2	3	3	3	2	2	1	2	2	2	3
CO4	2	2	3	3	3	3	3	3	3	2	2	3
CO5	1	1	2	2	3	3	3	2	2	3	2	3
Avg.	2.2	2.2	2.4	2.2	2.6	2.2	2	1.6	2.2	2.4	2.2	3

COURSE CODE	COURSE NAME	SEMESTER
BTCH401	CHEMICAL ENGINEERING	IV
	THERMODYNAMICS-I	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Cr			
3	0	1	4	3	0	1	4

Course Pre-requisites	Basics of Science, Process Calculations
Course Category	Core
Course focus	Employability
Rationale	international relevance
Course Revision/ Approval Date:	14/4/2017
Course Objectives (As per Blooms' Taxonomy)	To understand the basic concepts of thermodynamics in chemical engineering so that students can solve chemical engineering problems.
	To analyse the energy balances for steady state and unsteady state processes.
	To examine the solve energy transformation problems
	To evaluate the thermodynamic properties of real gases using various PVT relationships and heat capacities data
	To apply knowledge of liquefaction and refrigeration using different power cycles

Course Content (Theory)	Weightage	Contact
		hours
Unit 1:	20%	7
Introduction of Thermodynamics & Basic Concept: Scope & limitation of		
thermodynamics, Definitions and fundamental concepts, Equilibrium state		
and phase rule, Temperature and zeroth law of thermodynamics, Heat		
reservoir and heat engine, Reversible and irreversible processes.		
Unit 2:	20%	8
First Law of Thermodynamics: The first law of thermodynamics, First Law		
of Thermodynamics for Cyclic Process, Internal Energy, First Law of		
Thermodynamics for Non-flow Process, Enthalpy, First Law of		
Thermodynamics for Flow Process, Heat capacity.		

Unit 3: PVT Behavior and Heat Effect: Process involving ideal gas, Equations for state of real gas, Compressibility chart, Standard heat of reaction, Standard heat of formation, Standard heat of combustion	20%	10
Unit 4: Second Law of Thermodynamics: Limitations of the first law of thermodynamics, General statement of second law of thermodynamics, Entropy, Carnot principle, Mathematical statement of second law of thermodynamics, Third law of thermodynamics.	20%	10
Unit 5: Applications of the Laws of Thermodynamics: Fundamental equations and relationships, flow in pipes, Flow through Nozzles, Ejectors, Throttling process, Compressors. Refrigeration: Coefficient of performance, Carnot refrigerator, Vapour compression cycle, Absorption refrigeration, Choice of refrigerant, Heat pumps. Power Generation Cycles: The Steam-Power Plant: Rankine cycle, reheat cycle, regenerative cycle, Internal combustion engines: Otto cycle, Diesel cycle, Gas-turbine Power Plant: Brayton Cycle	20%	10

List Of Tutorial	Weightage	Contact hours
Unit 1: .	20%	4
Problems based on work, pressure & energy in MS Excel/Scilab. Problems based on reversible & irreversible processes in MS Excel/Scilab.		
Unit 2:	20%	4
 3. Problems based on the first law of thermodynamics on non-flow processes in MS Excel/Scilab. 4. Problems based on the first law of thermodynamics on flow processes in MS Excel/Scilab 		
Unit 3:	20%	6
 5. Problems based on processes involving ideal gases in MS Excel/Scilab. 6. Problems based on equations of state for real gas in MS Excel/Scilab. 7. Problems based on heat effects accompanying chemical reactions in MS Excel/Scilab. 		
Unit 4:	20%	4
8. Problems based on Entropy in MSExcel/Scilab. 9. Problems based on the second law of thermodynamics in MS Excel/Scilab		
Unit 5: 10. Problems based on refrigeration in MS Excel/Scilab.	20%	2

Instructional Method and Pedagogy: Chalk-board, Power point presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the thermodynamic properties and heat capacities data.		
CO2: Understand liquefaction and refrigeration cycles.	Cognitive	Understand, Analyse
CO3: Analyse energy transformation problems.		7 mary se
CO4: Analyse chemical engineering problems		
CO5: Understand the energy balances for Chemical Engineering Operations and Processes.		

Learning R	lesources
1.	Reference Books:
	Y. V. C. Rao, Chemical Engineering Thermodynamics, Universities Press (1997).
	B. G. Kyle 'Chemical Process Thermodynamics 3rd Ed., Prentice Hall India,
	(1994).
2.	Journals & Periodicals:
	The Journal of Chemical Thermodynamics, Elsevier
	Journal of Chemical Education, ACS Publications
3.	Other Electronic Resources:
	Chemical Engineering Thermodynamics, NPTEL

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	3	0
CO2	3	2	0
CO3	3	2	0
CO4	3	2	0
CO5	3	2	0
Avg.	3	2.2	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	1	0	0	1
CO2	3	3	2	1	1	0	0	0	1	0	0	1
CO3	3	3	2	2	1	0	0	0	1	0	0	1
CO4	3	3	2	1	0	0	0	0	1	0	0	1
CO5	3	3	2	2	1	0	0	0	1	0	0	1
Avg.	3	3	1.8	1.4	0.6	0	0	0	1	0	0	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCH402	HEAT TRANSFER	IV
	OPERATIONS	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	1	5	3	2	1	5

Course Pre-requisites	Basics of Thermodynamics
Course Category	Core
Course focus	Employability
Rationale	international relevance
Course Revision/	14/4/2017
Approval Date:	
Course Objectives	To Understand practical importance of heat transfer in industries
(As per Blooms' Taxonomy)	Able to analyse applications of different heat exchanger in chemical industries.
	Apply heat transfer concepts with heat transfer equipment used in industries
	Students would be able to evaluate the problems in the engineering field related to chemical aspects.
	Apply different dimensionless numbers pertaining to heat transfer

Course Content (Theory)	Weightage	Contact hours
Unit 1:	25%	15
Heat Transfer Fundamentals: Modes of heat transfer; General laws of heat transfer Heat transfer by Conduction: Fourier's law, One dimensional steady state conduction, heat conduction through plane and composite walls, cylinders and spheres, critical radius of insulation for cylinder and sphere, overall heat transfer coefficient, heat transfer from extended surfaces, two and three dimensional problems, various types of thermal insulations, Unsteady state heat conduction		

Unit 2:	25%	15
Heat transfer by Convection: Theory: Fundamentals of convection - Newton's law of cooling, External & Internal Forced convection, Natural		
convection – physical mechanism, grashoff number and Rayleigh number, over surfaces, combined forced and free convection dimensional analysis, dimensionless numbers.		
Heat Transfer with phase change and its design aspects: Basics of Heat transfer with phase change – mechanism of pool & flow boiling, drop wise and film condensation in horizontal tubes, Nusselt's approach and its extension.		
Unit 3: Heat transfer by Radiation : Thermal radiation, Blackbody Radiation, Radiative Properties, View Factor	15%	9
Unit 4: Heat Exchangers: Types of heat exchangers, Analysis of heat exchangers, LMTD & NTU effectiveness method. Selection of heat exchangers.	17%	10
Unit 5: Evaporation: Types, classification, selection. Single effect and multiple effect evaporators, evaporator calculations. Energy conservation in evaporation. Vacuum evaporation	18%	11

	List Of Practical	Weightage	Contact
			hours
Unit 1:		20%	4
	1. Thermal conductivity of metal bar		
	2. Thermal conductivity of composite wall		
Unit 2:		40%	8
	3. Heat transfer in natural convection.		
	4. Heat transfer in forced convection – laminar flow		
	5. Heat transfer in forced convection – turbulent flow.		
	6. Heat transfer in an agitated vessel		
Unit 3:		20%	4
	7. Emissivity measurement apparatus.		
	8. Stefan-Boltzmann apparatus		
Unit 4:		20%	4
	9. Shell and Tube heat exchanger.		
	10. Finned tube heat exchanger.		

List Of Practical Tutorial	Weightage	Contact hours
Unit 1:	20%	3
 Problems related to 1D,2D & 3D heat conduction equation through plane, cylinders & spheres. Problems related to composite walls, cylinders & spheres. Problems related to critical radius of insulation for cylinder & sphere. Problems related to fins. Problems related to unsteady state heat conduction. 		
Unit 2:	20%	4
1. Problems related to convection 2. problems related to internal forced convection 3. problems related to external forced convection 4. problems related to natural convection 5. problems related to phase change, boiling & condensation.		
Unit 3:	20%	2
1. Problems related to thermal radiation & Blackbody. 2 2. Problems related to radiative properties & view factor.		
Unit 4:	20%	2
Problems related to LMTD Problems related to NTU effectiveness method.		
Unit 5: 1. Problems related to single effect evaporators 2. Problems related to multiple effect evaporators 3. problems related to evaporator calculation and energy conservations	20%	4

Instructional Method and Pedagogy: Chalk-board, Power point presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the mechanisms of heat transfer under steady and transient conditions. CO2: Understand the basic modes of heat transfer	Cognitive	Understand, Apply

CO3: Apply principles of heat transfer to predict transfer coefficients	
CO4: Apply heat transfer concepts with heat transfer equipment used in industries	
CO5: Apply the knowledge and design heat transfer equipment.	

Learnin	g Resources
1.	Reference Books:
	S. B. Thakore and B. I. Bhatt, Introduction to Process Engineering and Design, McGraw Hill Publication House, 2nd Edition.
	Y.V.C. Rao, HeatTransfer, 2nd Edition.
	J. M. Coulson & J. F. Richardson, Chemical Engineering, Vol.1, 6 th Edition, Elsevier.
	Yunus .A.Cengel, heat transfer – a practical approach, second edition
2.	Journals & Periodicals:
	International Journal of Heat and MassTransfer,
	Experimental Thermal and Fluid Science, Heat and Mass Transfer Research Journal CanSR
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks
Theory: Mid semester	20 marks
Marks	
Theory: End Semester	40 marks
Marks	

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	CO2 2 2		0
CO3	2	2	0
CO4	2	1	0
CO5	2	1	0
Avg.	2	.4	0.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	0	1	1	1	1	0	1	1
CO2	2	1	1	1	0	1	1	1	0	0	0	1
CO3	1	2	3	1	1	1	1	1	1	0	1	1
CO4	1	0	1	0	0	1	1	1	0	0	0	0
CO5	1	0	1	0	0	1	1	1	0	0	0	0
Avg.	1.4	1	1.6	0.6	0.2	1	1	1	0.4	0	0.4	0.6

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCH403	PROCESS TECHNOLOGY	IV

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial To Cr			
4	2	0	6	4	2	0	5

Course Pre-requisites	Process Technology
Course Category	Core
Course focus	Employability
Rationale	International relevance
Course Revision/	8/7/2025
Approval Date:	
Course Objectives	Knowledge of various production methods of most
(As per Blooms'	industrial chemicals
Taxonomy)	Understanding of process conditions and its effect on conversion.
	Understanding of economical balance and factors affecting it.
	Understanding of various problems associated with process and troubleshooting
	Understanding of suitable materials of construction for various types of process environment.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Industrial Acids & Chlor-Alkali Industry	25%	12
Industrial Acids: Hydrochloric Acid manufacture by synthesis process, Sulfuric Acid & Oleum manufacturing processes, technologies, engineering problems, energy recovery, material construction piping & storage, DCDA process. Phosphoric Acid production processes/technologies by wet & Electric furnace, advantages & disadvantages, Nitric Acid engineering problems involved. Material of construction of piping etc.		

Chlor-alkali Industry: Manufacturing process of Caustic soda, Chlorine and engineering and design problems involved. Sodium Carbonate (Soda Ash): Manufacturing process/ technologies for sodium carbonate production, engineering problems limitations etc.		
Unit 2: Industrial Gases, Cement and Soap Industries	20%	13
Industrial gases: Properties and uses of Hydrogen, Steam reforming, Green Hydrogen Concept, Manufacturing and challenges. Oxygen, nitrogen, Carbon dioxide, carbon monoxide and rare gases. Cement Industries: Introduction to cement industries, Types of cement, manufacture by wet process & dry process, engineering problems. Soap Industries: Types of soaps, Soap manufacture, recovery and purification		
Unit 3: Paper, Pulp, Fermentation	20%	10
Paper & Pulp Industry: Pulping techniques, Kraft process, black liquor recovery & major challenges in production via various methods. Fermentation Industry: Introduction to sugar manufacture and manufacture of Alcohol/ Ethanol & Methanol		
Unit 4: Paint & Dye Industry	10%	5
Paint Industry: Types of paint, constituents & its properties, PVC of		
paint manufacture of paints.		
Dye industry: Classification of Dyes, Dye intermediates, manufacturing	250/	15
Unit 5: Fertilizer Industry Introduction to plant nutrients, micro-macro nutrients, types of fertilizers Nitrogen Fertilizers: Ammonia, Urea, ammonium sulphate— production, manufacture & storage, handling and uses; Snamprogetti process for Urea production Phosphatic fertilizers: Raw materials, ground phosphate rock, single super phosphate, triple super phosphate, methods of production, characteristics and specifications. Potassium fertilizers: Potassium Chloride, Potassium nitrate, Potassium sulphate, production, manufacture & storage, handling and uses. Miscellaneous Fertilizer and Bio Fertilizers: Manufacturing of NPK, Ammonium Sulphate Phosphate (ASP), Calcium Ammonium Nitrate (CAN). Types of Bio fertilizers, Nitrogen-fixing bio fertilizers, bio fertilizers, Preparation of a bio fertilizers. Environmental & Energy factors affecting the industry solid, liquid and gases waste released form the industry.	25%	15

List Of Practical	Weightage	Contact hours
Unit 1:	20%	2
1. Nitration of salicylic acid by conventional method.		
2. Green synthesis of 5-nitrosalicylic acid.		
Unit 2:	25%	4
3. To determine the loss of igniting the cement sample.		
4. Preparation of soap by hot method		
5. Preparation of soap by cold method		
Unit 4:	30%	8
6. To determine Chemical Oxygen Demand (COD) of given effluent		
sample.		
7. Preparation of azo dye.		
8. Preparation of Indigo dye.		
9. Preparation of urea formaldehyde resin		
Unit 5:	25%	2
10. To determine the amount of potassium in the given sample of fertilizer.		

Instructional Method and Pedagogy: Chalk-board, Power point presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand 1the basic concepts of unit operations, unit processes, schematic representation and applications for unit operations and unit processes.		
CO2: Understand process aspects like yield, byproducts formed, generation of waste	Cognitive	Understand
CO3: Understand Sugar- Starch, Paper- Pulp and Fermentation Industry		
CO4: Understand major engineering problems encountered in chemical process industries		
CO5: Draw and explain process flow diagrams for a given process		

Learning Re	esources
1.	Reference Books:
	Shukla S. D. and G. N. Pandey, a Text Book of Chemical Technology, Vikas Publishing House, 1986.
	Kirk and Othmer, 'Encyclopedia of Chemical Technology', 5th Ed, 24 volumes, (2006)
	P. H. Groggins, "Unit Processes in Organic Synthesis", McGraw-Hill; Second Edition edition, 1938.
2.	Journals & Periodicals:
3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks					
Theory: Mid semester Marks	20 marks					
Theory: End Semester Marks	40 marks	40 marks				
Theory: Continuous Evaluation Component Marks	Attendance	05 marks				
	MCQs Open Book Assignment	10 marks 15 marks				
	Article Review	10 marks				
Practical Marks	Total	40 Marks				
	Attendance	05 marks				
	Practical Exam	20 marks				
	Viva	10 marks				
	Journal	10 marks				
	Discipline	05 marks				
	Total	50 Marks				

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	2	0
CO3	2	1	0
CO4	2	2	0
CO5	2	1	0
Avg.	2	1.2	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	0	0	0	1	1	1	1	1	0	1
CO2	2	3	2	0	1	1	1	0	0	0	1	1
CO3	1	1	2	1	1	0	0	1	1	0	0	0
CO4	1	3	2	3	1	1	1	1	0	0	1	1
CO5	1	2	1	0	0	1	1	0	0	0	0	0
Avg.	1.4	2	1.4	0.8	0.6	0.8	0.8	0.6	0.4	0.2	0.4	0.6

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCH404	NUMERICAL METHODS	IV
	IN ENGINEERING	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Total Credit		
2	2	0	4	2	2	0	3

Course Pre-requisites	Numerical Methods
Course Category	Core
Course focus	Employability
Rationale	International relevance
Course Revision/ Approval Date:	14/4/2017
Course Objectives (As per Blooms' Taxonomy)	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.
V,	Apply numerical methods to obtain approximate solutions to mathematical problems.
	Analyse and evaluate the accuracy of common numerical methods.
	Apply numerical methods in Matlab
	Apply efficient, well-documented Matlab code and present numerical results in an informative way.

Course Content (Theory)	Weightage	Contact hours	
Unit 1:	20%	5	
Solution Algebraic and Transcendental Equations: Bisection, False position, Newton Raphson Method, Secant Method.			
Unit 2:	20%	6	
Solution of system of Linear Equations: Gauss Elimination method, LU decomposition method, Gauss Seidel method. Interpolation: Newton's forward and backward interpolation			

Unit 3:	20%	7
Newton's divided difference interpolating polynomials, Lagrange Interpolating polynomials. Numerical Differentiation: First and second order differentiation Equations of Equally Spaced Data. Solution using Matlab. Numerical Integration: Trapezoidal rule, Simpson's one third and 3/8th rule. Solution using Matlab.		
Unit 4:	20%	6
Numerical methods for Solution of ordinary differential equation: Taylor's series method, Euler's method, Modified Euler's method, Runge Kutta forth ordered method, Milne's Predictor Corrector Method. Solution using Matlab.		
Unit 5:	20%	6
Finite element method to solve second order ODE. Curve Fittings: General Linear Least Squares, Fitting of quadratic and exponential curves. Solution using Matlab.		

List Of Practical	Weightage	Contact hours
Unit 1: .	20%	4
Matlab Introduction and Programs of Bisection, False position, Newton Raphson Method, Secant Method		
Unit 2:	20%	4
Ont 2:	2070	4
Matrices in Matlab and Solution of System of linear equations in Matlab,		
Eigen Value and eigen vectors using Matlab. Programs of Difference		
Table, newtons forward and Backward Interpolations.		
Unit 3:	20%	4
Matlab Programs of Newton's divided difference interpolation		
Unit 4:	20%	4
Matlab Programing of Lagrange's Interpolation, Trapezoidal rule,		
Simpson's one third and 3/8th rule. Curve plot and Graphs in Matlab		
Unit 5:	20%	4
Curve fitting in Matlab		

Instructional Method and Pedago	g ogy: Chalk-l	board, Power po	oint presentation
---------------------------------	-----------------------	-----------------	-------------------

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Analyse the approximation techniques to formulate and apply appropriate strategy to solve numerical problems.		
CO2: Understand and apply computer programs for solving the numerical problems.	Cognitive	Understand,
CO3: Apply the knowledge and skills of numerical methods to solve different equations.		Apply, Analyse
CO4: Apply appropriate numerical methods to solve the problem with most accuracy.		
CO5: Analyse/Compare different methods in numerical analysis with accuracy and efficiency of solution.		

Learning Re	esources
1.	Reference Books:
	Grewal. B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science"
	9th Edition, Khanna Publishers, New Delhi, 2007.
2.	Journals & Periodicals:
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	2	2
CO2	3	2	2
CO3	2	1	2
CO4	3	2	2
CO5	3	2	2
Avg.	2.6	1.8	2

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	2	0	1	1	1	1	0	2
CO2	2	3	1	0	0	0	0	1	0	1	0	2
CO3	3	2	0	2	3	0	1	2	1	0	0	2
CO4	3	2	0	0	3	0	0	0	2	1	0	2
CO5	2	0	0	1	3	1	1	2	2	1	0	2
Avg.	2.4	1.8	0.4	1	2.2	0.2	0.6	1.2	1.2	0.8	0	2

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE BTCH405	COURSE NAME MATERIAL SCIENCE & ENGINEERING	SEMESTER IV

Teaching S	Teaching Scheme (Hours)			Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Cree			
3	0	0	3	3	0	0	3

Course Pre-requisites	Basics of Science				
Course Category	Core				
Course focus	Employability				
Rationale	international relevance				
Course Revision/ Approval	14/4/2017				
Date:					
Course Objectives	Understanding of various NDT techniques				
(As per Blooms' Taxonomy)	Apply microstructures of ferrous – nonferrous metals.				
Taxonomy)	Analyse different corrosion control techniques.				
	Evaluate different material testing methods				
	Understanding of different composite materials.				

Course Content (Theory)	Weightage	Contact hours
Unit 1:	20%	10
Classification of Engineering materials, Introduction to levels of internal		
structure like macro, micro, crystal and atomic and correlated properties,		
Characterization Methods/Tools to reveal the different level of structure.		
Unit 2:	20%	15
Steady & Non steady diffusions, Stress-Strain, Elastic and plastic		
deformations, Slip systems, strengthening, mechanisms, Phases,		
microstructure, phase equilibria, Fe-Fe3C phase diagram. Reaction of iron		
carbon system Mechanical behaviour of Fe-C alloys and alloys. Mechanical		
testing and standards: testing methods, tensile, impact, hardness, fracture,		
toughness & fatigue. NDT examination – Ultrasonic, magnetic particle, Dye		
penetration inspection & Radiography		
Unit 3:	20%	6
Introduction of alloys and their importance in industry. Properties of		
Ferrous & Non Ferrous alloys, Uses of various grades of stainless steels are		
to be explained from corrosion point of view, high temperature		

requirements, etc.		
Unit 4:	20%	6
Corrosion, control & mitigation of metals & alloys. Material selection and		
design consideration, materials and industrial design, material property		
charts, material selection, strategy and procedure		
Unit 5:	20%	8
Introduction to Composite and Ceramic material, Molecular weight,		
Molecular configurations of polymers, Mechanisms of deformation and		
strengthening in polymers, glass transition economic, environmental and		
societal issues related to engineering materials; case studies related to few		
engineering products/equipment		

Instructional Method and Pedagogy: Chalk-board, Power point presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the properties of various materials and their applications in various field		
CO2: Gain knowledge of different types of ceramic and composite materials	Cognitive	Understand,
CO3: Understand the importance of materials in materials science and engineering field.		Apply
CO4: Apply new developments in materials application field.		
CO5: Apply the fundamental science and engineering principles, relevant to materials		

Learning R	esources
1.	Reference Books:
	Materials Science and Engineering, by William Smith, Javed Hashmi and Ravi Prakash. McGraw Hill Education, (2013).
	V. Raghavan, "Material Science and Engineering – A First Course by. Prentice Hall of India, (2004).
	UHLIG'S corrosion handbook, 3rd edition, John Wiley & SonsInc.
	Mechanical Metallurgy by George E Dieter. McGraw Hill Education, (1986).

	A K Bhargava and C P Sharma, "Mechanical Behaviour and Testing of Materials". Prentice Hall of India, (2011)
2.	Journals & Periodicals:
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks					
Theory: Mid semester	20 marks					
Marks						
Theory: End Semester	40 marks					
Marks						
Theory: Continuous						
Evaluation Component	Attendance	05 marks				
Marks	MCQs	10 marks				
	Open Book Assignment	15 marks				
	Open Book Assignment	10 marks				
	Total	40 Marks				

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	2	1
CO2	1	1	1
CO3	2	2	1
CO4	3	3	1
CO5	3	1	1
Avg.	2.2	1.8	1

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	0	1	3	1	3	1	0	0	0	1
CO2	1	2	2	1	0	0	0	0	0	0	0	0
CO3	3	3	1	3	3	3	3	0	1	1	2	1

CO4	2	2	1	3	3	2	2	1	0	1	2	0
CO5	2	1	2	1	0	3	1	0	0	0	0	1
Avg.	1.8	2.2	1.2	1.8	1.8	1.8	1.8	0.4	0.2	0.4	0.8	0.6

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCH408	INDUSTRIAL POLLUTION	IV
	CONTROL	

Teaching S	Scheme (Hou	ırs)		Teaching (Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	Basics of Science
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/ Approval	14/4/2017
Date:	21/03/2023
Course Objectives	Analyze the characteristics of solid waste and its handling &
(As per Blooms'	management.
Taxonomy)	Understand and select the design of air pollution control devices.
	Design of suitable treatment for wastewater.
	Apply the abatement technologies in industries in the near future.
	Apply applications of controlling technology in their particular field.

Weightage	Contact hours
10%	2
10%	1
	10%

Unit 3: Water Pollution and abatement Techniques Sources and characteristics water pollution, Effects of water pollution, control & prevention methods – Primary, secondary & teritiary, The Water (Prevention and Control of Pollution) Act, 1974 and limits. Measurement of Water Quality.	30%	12
Unit 4: Air Pollution and control Air pollutants, Preventive and Controlling mechanism of Air Pollutants. Introduction and application of Gravity settler, cyclone separator, Electrostatic Precipitator, Scrubber	25%	8
Unit 5: Solid Waste Management Analysis and quantification of hazardous and non-hazardous wastes, Treatment and disposal of solid wastes (Bio-medical Waste, Industrial Solid Waste: Dyes & Pigment, Pharmacy, Glass & Ceramics, Rubber, Polymer, Nuclear Power Plant, Energy Industries etc.)	25%	7

Instructional Method and Pedagogy: Chalk-board, Power point presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Analyse the industrial activities and identify the environmental problems		
CO2: Understand and design the air pollution control devices.	Cognitive	Understand,
CO3: Apply the strategies to control and reduce pollution		Apply, Analyze, Create
CO4: Analyse and design the suitable treatment techniques for wastewater		2.2
CO5: Analyse the characteristics of solid waste and its handling & management.		

Learnir	ng Resources
1.	Reference Books:
	Masters, G.M., Introduction to Environmental Engineering and Science, Prentice Hall off India, (2008).
	➤ De Nevers, N., Air Pollution Control Engineering, McGraw-Hill (2000).
	➤ J.R. Welty, R.W. Wilson, and C.W.Wicks, Rorer G.E, Wilson R.W. "Fundamentals of Momentum Heat and Mass Transfer", V Edn. John Wiley, New York, 2007.
2.	Journals & Periodicals:
	Journal of Industrial Pollution Control
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	1	1
CO3	2	2	2
CO4	3	3	1
CO5	3	3	1
Avg.	2.4	1.8	1

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	0	1	0	1	3	3	2	3	0	1
CO2	1	1	2	0	0	1	2	2	3	3	0	1
CO3	3	2	1	0	2	1	1	2	3	3	2	3
CO4	3	3	3	2	1	3	2	3	3	3	3	2
CO5	3	3	3	2	1	3	2	3	3	3	3	2
Avg.	2.4	2.2	1.8	1	0.8	1.8	2	2.6	2.8	3	1.6	1.8

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
AECC401	ENVIRONMENTAL	IV
	STUDIES	

Teaching S	Scheme (Hou	ırs)		Teaching (Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Total Credi			
2	0	0	2	2	0	0	2

Course Pre-requisites	Basics of Science
Course Category	Ability Enhanced Compulsory Course
Course focus	Employability
Rationale	
Course Revision/ Approval	14/4/2017
Date:	
Course Objectives	Remember: To acquire an awareness of and sensitivity to the total
(As per Blooms'	environment and its allied problems.
Taxonomy)	Apply: To make educated judgments about environmental issues.
	Create: Develop skills and a commitment to act independently and collectively to environment sustainability
	Apply & Analysis : Students can able to debate environmental science with use of appropriate scientific information
	Apply & Understand : Engaging with students of all disciplines to think critically, ethically, and creatively when evaluating environmental issues.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction	20%	2
Introduction of Ecology Ecology-Objectives and Classification Concepts of an ecosystem-structure & function of ecosystem components of ecosystem, Hydrological cycle, carbon cycle and carbon footprint computation, oxygen cycle, Nitrogen cycle, Sulphur cycle		
Unit 2: Ecological Pyramids	20%	1
Ecological pyramids of various ecosystems Forest Ecosystem, Grassland Ecosystem, Desert Ecosystem, Aquatic ecosystem, Estuarine Ecosystem.		

Unit 3: Air Pollution and control Introduction, Classification of air pollutants, air pollutants and their effects, acid rain, photochemical smog, particulates. Characteristics and biochemical effects of some important air pollutants, Effect of air pollutants on man and environment, Air quality standard, air monitoring and control of air pollution.	20%	12
Unit 4: Water Pollution and control Introduction, Classification of water pollutants, physical, chemical and biological characteristics of waste water, wastewater treatment: Primary treatment- Sedimentation, coagulation, equalization, neutralization, secondary treatment-aerobic treatment-aerated lagoons, trickling filter, activated sludge process, oxidation ditch process, oxidation pond, anaerobic treatment-anaerobic sludge digestion, sludge treatment and disposal and tertiary treatment-evaporation, ion exchange, adsorption, chemical precipitation, Electrodialysis, reverse osmosis.	20%	8
Unit 5: Solid and Hazardous Waste Introduction, Classification and origin, characteristics of solid wastes, objectives and considerations in solid waste management, methods of solid waste treatment and disposal - composting, land filling, thermal processes-incineration, pyrolysis, recycling and reuse of solid waste-co-disposal, bioconversion.	20%	7

Instructional Method and Pedagogy: Chalk-board, Power point presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain	
After successful completion of the above course, students will be able to:			
CO1: Understand the environmental issues with a focus on sustainability.			
CO2: Understand the physical, chemical and biological components of the earth's systems.	Cognitive	Understand,	
CO3: Understand and analyse the global scale of environmental problems		Apply	
CO4: Apply sustainability as a practice in life, society and industry			
CO5: Understand the pollution control techniques			

Learning Resources

1. Text Books:

- ➤ Fundamental concepts in Environmental studies by DD Mishra, S. Chand Publishing, India
- ➤ Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by PS Verma and VK Agarwal, S. Chand Publication, India
- > Fundamentals of Ecology by PD Sharma, Rastogi Publications
- > Ecology and Environment by PD Sharma, Rastogi Publications
- > Environmental Chemistry by BK Sharma, GOEL Publishing house
- > Textbook of Environmental Studies, by E. Bharucha, UGC universities Press
- > Environmental Studies by R. Rajagopalan, Oxford University Press
- ➤ Environmental Pollution and Control by JF Peirce, RF Weiner, and PA Vesilind, Elsevier Science & Technology Book
- > Ecology by Mohan P. Arora, Hmalaya Publishing House
- > Fundamentals of Ecology by M.C. Dash

Reference Books:

Fundamentals of Ecology by EP Odum Cengage

- > Big Questions in Ecology & Evolution by TN Sherratt & DM Wilkinson, Oxford.
- ➤ Ecology: Experimental Analysis of Distribution & Abudance by CJ Krebs, Pearson Education, London
- > Concept of Ecology by EJ Kormondy, Pearson Education, London
- ➤ Conservation Biology: Voices from the Tropics. Bys Sodhi, N.S., Gibson, L. & Raven, P.H. (eds) John Wiley & Sons
- > Plastic and Environment by RE Hester and RM Harrison, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK
- > Environmental Education and Ecotourism by Fernando Ramírez and Josefina Santana, Springer Nature Switzerland AG
- > Reclamation of Arid lands by Mohammad Jafari, Ali Tavili, Fatemeh Panahi, Ehsan Zandi Esfahan and Majid Ghorbani, Springer International Publishing Switzerland

	➤ Emerging Issues in Ecology and Environmental Science, Case studies from India by T. Jindal, Springer Nature Switzerland
	➤ Environmental Water Footprints Concepts and Case Studies from the Food Sector by SS Muthu, Springer Nature Singapore
2.	Journals & Periodicals:
	➤ Environmental Pollutants and Bioavailability
	➤ Clean Air Journal
	➤ Emerging Contaminants
	➤ Environment: Science and Policy for Sustainable Development
	➤ Annual Review of Environment and Resources
	➤ Renewable Energy
	➤ Renewable & Sustainable Energy Reviews
	➤ Environmental Health
	➤ Environment International
	➤ International Journal of Environmental Research and Public Health
	➤ The Environmental Magazine
	➤ Natural History (magazine)
	➤ Environment News Service
	➤ The Environmentalist
	➤ Green Builder Media
3.	Other Electronic Resources:
	➤ Green.tv—supported by UNEP—broadband TV channel for films about environmental issues
	➤ Climate Change TV—funded by companies, governments and organisations, and produced by the magazine Responding to Climate Change—the world's first web channel specific to climate change videos
	➤ Terra: The Nature of Our World video podcast produced in conjunction with the Master of Fine Arts program in Science & Natural History Filmmaking at Montana State University, Filmmakers for Conservation, and PBS—weekly video show about science and natural history

➤ Green Times Ahead—based in India—student run non-profit with a focus on
evading the detrimental effects of air and water pollution, constantly involved in
communal engagement

- ➤ IUCN Red data List
- ➤ Air quality index
- ➤ Nature Education Knowledge Project.

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	1	1
CO3	2	2	2
CO4	3	3	1
CO5	3	3	1
Avg.	2.4	1.8	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	0	1	0	1	3	3	2	3	0	1
CO2	1	1	2	0	0	1	2	2	3	3	0	1
CO3	3	2	1	0	2	1	2	2	3	3	2	3
CO4	3	3	3	2	1	3	2	3	3	3	3	2
CO5	3	3	3	2	1	3	2	3	3	3	3	2
Avg.	2.6	2.2	1.8	1	0.8	1.8	2.2	2.6	2.8	3	1.6	1.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

BTCH501	MASS TRANSFER	SEMESTER
	OPERATIONS - I	V

	Teaching Sch	neme (Hours)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Tota			
4	2	0	6	4	1	-	5

Course Pre-requisites	Fluid Flow Operations, Heat Transfer Operations
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	24/06/2020
Approval Date:	
Course Objectives	To enable the student:
(As per Blooms'	1: To understand the basic principles of mass transfer operations.
Taxonomy)	2: To understand the equilibria for various systems.
	3: To learn various types of equipment for gas liquid operations.
	4: To learn concepts of Gas absorption and Distillation.
	5. To learn design calculations of absorber and distillation columns used in industries.

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Mass Transfer Fundamentals and Molecular Diffusion	20%	12
Molecular and eddy diffusion (in gases, liquids, biological solutions, and		
gels), Fick's law of diffusion. Steady state diffusion in fluid, Measurement		
of diffusivity by Stephen tube, Various mass transfer co relationship, Mass-		
heat momentum transfer analogies, unsteady state diffusion		
Unit 2: Interphase Mass Transfer & Equipment for Mass Transfer	20%	12
Operations		
Interphase mass transfer: Equilibrium, concept of local and overall mass		
transfer coefficients and their relationship, Material balances application to		
gas-liquid and liquid-liquid systems.		
Equipment for gas-liquid operations: Equipment for gas-liquid		
operation, their classification and selection criteria. Gas Dispersed: Bubble		
columns, Mechanically Agitated vessels, Tray Towers etc. Liquid		
Dispersed: Venturi scrubbers, wetted-wall towers, spray towers, packed		

towers, etc.		
Unit 3: Gas absorption Mechanism of gas absorption, equilibrium solubility of gases in liquids, concept of ideal and non-ideal solution, choice of solvent for absorption, calculation of HETP, HTU, NTU, calculation of height of tower, types of packing, modeling of plate column and packed column.	20%	12
Unit 4: Distillation- Basic concept and single stage distillation Vapour-liquid equilibria for ideal and non-ideal systems, positive and negative deviations from ideality, relative volatility, Raoult's law, enthalpy concentration diagrams, Flash and simple distillation, vacuum distillation, Batch and steam distillation, types of reboiler.	20%	12
Unit 5: Distillation- Fractional distillation and basic design Fractional distillation, infinite, minimum and optimum reflux ratio, multicomponent distillation, azeotropic distillation, extractive distillation, concept of reflux, distillation methods (McCabe Thiele and Ponchon Savarit methods) to find out number of theoretical stages.	20%	12

List of Practical	Weightage	Contact hours
1: Diffusivity of vapour in air	14.28%	2
2: Mass Transfer coefficient in Wetted wall column	14.28%	2
3: Gas absorption in a packed column.	14.28%	2
4: Mass transfer with and without chemical reaction.	14.28%	2
5: VLE experiments.	14.28%	2
6. Simple Distillation	14.28%	2
7. Distillation in a packed column.	14.28%	2

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		

CO1: Understand the knowledge of mass transfer by applying principles of diffusion, mass transfer coefficients and interphase mass transfer.		
CO2: Understand the concept and operation of various types of gas liquid contacts equipment	Cognitive	
CO3: Understand the operation of various types of drying equipment		Understand, Apply
CO4: Apply basic concept for design calculations of various mass transfer operations		
CO5: Determine NTU, HTU, HETP and height of packed bed used for Absorption and Humidification operations		

Learning Reso	urces								
1.	Reference Books:								
	1. W.L. McCabe, J. Smith and P. Harriot, Unit Operations of Chemical								
	Engineering, 7th Edition, Tata McGraw Hill.								
	2. B. K. Dutta, Principles of Mass Transfer and Separation Processes, 2 nd edition,								
	Prentice Hall of India, 2007.								
	3. Seader, Henley, Roper, 'Seperation Process Principles', 3rd edition, John								
	Wiley and Sons.								
	4. Lyle Albright, 'Albright's Chemical Engineering Handbook', CRC Press.								
	5. N.Ananthraman, K.M. Meera Begum, 'Mass Transfer- Theory and Practice',								
	PHI Publications								
2.	Textbook:								
	R. E. Treybal, Mass Transfer Operations, 3rd Edition, McGraw Hill.								

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
Wai KS	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	1	0
CO2	3	1	0
CO3	3	2	0
CO4	3	1	0
CO5	3	1	0
Avg.	3	1.2	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	C											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	1	0	0	0	1	1	0	1
CO2	2	1	1	1	1	0	0	0	1	1	0	1
CO3	2	2	3	1	1	0	0	0	1	1	0	1
CO4	2	1	1	1	1	0	0	0	1	1	0	1
CO5	2	1	1	1	1	0	0	0	1	1	0	1
'												
_						_	_	_			_	_

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

BTCH502	Chemical Reaction	SEMESTER
	Engineering-I	\mathbf{V}

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	1	6	3	1	1	5

Course Pre-requisites	Applied Chemistry, Mathematics
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student:
(As per Blooms' Taxonomy)	1: To learn concepts of kinetics and mechanism of homogeneous reactions
	2: To design ideal reactors for single reaction including heat effects
	3: To understand the importance of multiple reactor systems.
	4: To understand the temperature and pressure effect on reactor design.
	5: To analyse non-ideal flow behaviour in reactors.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Kinetics of homogeneous reaction Introduction to Chemical Reaction Engineering, Classification of reactions, Rate of reaction with its various forms and various factors affecting the rate of reaction. Kinetics of homogeneous reaction Classification of reactions, Concept of Rate of reaction. Molecularity and order of reaction, Rate constant. Temperature dependency and concentration dependency of the reaction rate.	20%	09
Unit 2: Interpretation of batch reactor data Constant volume batch reactor, analytical method to find rate equation, Variable volume batch reactor. Ideal reactor for single reaction: batch, CSTR and PFR.	20%	09

Unit 3: Design for single and multiple reactions: Design for single reactions Size comparison of single reactors, multiple	20%	09
reactor systems, recycle reactor and autocatalytic reactions. Multiple		
reactions: Design for parallel reactions Introduction to multiple reactions,		
qualitative and quantitative treatment of product distribution and of reactor		
size, the selectivity.		
Unit 4: Design of series reactions, Temperature and pressure	20%	09
effect		
Design for series reactions		
Quantitative and qualitative treatments for plug flow or batch reactor and		
mixed flow reactor, their performance characteristics, kinetic studies and		
design for maximizing the desired product, successive irreversible		
reactions of different orders, reversible reactions, irreversible series		
parallel reactions.		
Effect of Temperature and pressure in reaction engineering		
Heats of reaction and equilibrium constants from thermodynamics,		
equilibrium conversion, general graphical design procedure. Optimum		
temperature progression, Evaluation of adiabatic and nonadiabatic reactor		
performance. Thermal stability of reactors.		
Unit 5: Distillation- Fractional distillation and basic design	20%	09
RTD and various techniques to find it, The E, F and C Curves, their		
interrelationship, conversion in non-ideal flow reactors, Zero parameter		
and One parameter models for non-ideal reactors.		

List of Practical	Weightag	Contac
	e	t hours
1: Determination of Activation energy for reaction between Sodium thiosulfate and HCl	12.5%	2
2: Isothermal Batch Reactor	12.5%	2
3: Isothermal CSTR and PFR	12.5%	2
4: CSTR in series	12.5%	2
5. RTD studies in plug flow tubular reactors (coiled tube type)	12.5%	2
6. RTD in CSTR	12.5%	2
7. RTD studies in PFR followed by CSTR	12.5%	2
8. RTD in packed bed reactor	12.5%	2

List of Practical Tutorial	Weightag e	Contac t hours
Unit 1: Kinetics of homogeneous reaction.	20%	3
Unit 2: Interpretation of batch reactor data.	20%	3

Unit 3: Design for single and multiple reactions.	20%	3
Unit 4: Design of series reactions, Temperature and pressure effect.	20%	3
Unit 5: Distillation- Fractional distillation and basic design.	20%	3

Instructional Method and Pedagogy: Chalk board, PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the stoichiometry preferable at more than one temperature		
CO2: Evaluate reactor engineering problems through reasoning rather than memorization of numerous equations	Cognitive	Understanding, Evaluate
CO3: Understand rate laws and determine kinetics of several homogenous and heterogeneous reactions		
CO4: Understand the concept of Residence Time Distribution (RTD) in various reactors and obtain the actual design parameters to design Real Reactor		
CO5: Perform, evaluate and optimize the design and operation of catalyzed and non-catalyzed chemical reactors		

Learning Re	sources
1.	Reference Books:
	1. H. Scott Fogler 'Elements of Chemical Reaction Engineering', 5th Edition, Prentice Hall India, (2015).
	2. Hougen O.A., Watson K. M., and Ragatz R.A., 'Chemical Process
	Principles', Part III, John Wiley, USA.
	3. L Schmidt, 'The Engineering of Chemical Reactions', 2nd Edition, Oxford,
	(2008).
	4. J. M. Smith, 'Chemical Engineering Kinetics', McGraw-Hill, USA.
	5. Lyle Albright, 'Albright's Chemical Engineering Handbook', CRC Press.
2.	Textbook: O. Levenspiel "Chemical Reaction Engineering", 3rd Edition, John Wiley
	& Sons.

Evaluation Scheme	Total Marks						
Theory: Mid semester Marks	20 marks						
Theory: End Semester Marks	40 marks						
Theory: Continuous							
Evaluation Component Marks	Attendance	05 marks					
	MCQs	10 marks					
	Open Book Assignment	15 marks					
	Article Review	10 marks					
	Total 40 Marks						
Practical Marks							
	Attendance	05 marks					
	Practical Exam	20 marks					
	Viva	10 marks					
	Journal	10 marks					
	Discipline	05 marks					
	Total	50 Marks					

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	2
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	2	1
Avg.	3	1.8	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	1	0	0	1	0	0	1
CO2	3	3	3	2	2	0	0	0	1	0	0	1
CO3	3	3	3	2	2	0	0	0	1	0	0	1
CO4	3	3	3	2	1	0	0	0	1	0	0	1
CO5	3	3	3	2	1	0	0	0	1	0	0	1
Avg.	3	2.8	2.8	1.8	1.4	0	0	0	1	0	0	1

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

BTCH503	CHEMICAL ENGINEERING	SEMESTER
	THERMODYNAMICS - II	V

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	-	1	4

Course Pre-requisites	Chemical Engineering Thermodynamics – I, Engineering
	Mathematics I, II, III
Course Category	Core
Course focus	
Rationale	
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student:
(As per Blooms' Taxonomy)	1: Understand the concept of estimating thermodynamic properties from the network of equations
	2: Understand the partial molar properties of components in a particular phase, and apply to calculations of heat of mixing, volume, and entropy changes on processing of ideal and real mixtures.
	3: Understand chemical reaction equilibrium and various parameters affecting it.
	4: Understand the fundamentals of phase equilibria and estimating VLE data for various systems.
	5: Understand the LLE for binary systems using LLE diagrams and the concept of SLE.

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Thermodynamic Properties of Pure Fluid	20%	09
Classification of thermodynamic properties, Gibbs free energy,		
Relationship among thermodynamic properties, fugacity and activity.		
Unit 2: Properties of Solutions	22.2%	10
Fundamental Property Relation, Partial molar properties, Chemical		
potential, fugacity in solution, Ideal-Gas-State Mixture Model, Fugacity		
and Fugacity Coefficient: Pure Species, Generalized Correlations for the		

Fugacity Coefficient, The Ideal-Solution Model, Excess Property, activity and activity coefficient, Gibbs Duhem equation, property changes of mixing.		
Unit 3: Chemical Reaction Equilibria Reaction Coordinate, Criteria for chemical reaction equilibrium, Le- Chatelier's Principle, Evaluation of Equilibrium Constants, Relation of Equilibrium Constants to Composition, Equilibrium Conversions for Single Reactions Effect of temperature on equilibrium, Effect of pressure on equilibrium constant and composition, Effect of inert, Phase Rule and Duhem's Theorem for Reacting Systems, Multireaction Equilibria	26.6%	12
Unit 4: Phase Equilibria & Vapour – Liquid Equilibria (VLE) Criteria for phase equilibrium, Phase equilibria in single and multicomponent system, Phase rule for non-reacting system, Vapour-liquid equilibria, constant temperature and pressure equilibria, Vapour-liquid equilibria in ideal solution, Azeotropes, Vapour-liquid equilibria at low and high pressure, Dew point and bubble point equilibria, Vapour-liquid equilibria for a system of limited miscibility. Excess Gibbs Energy and Activity, The Gamma/Phi Formulation of VLE, Simplifications: Raoult's Law, Modified Raoult's Law, and Henry's Law, Correlations for Liquid-Phase Activity Coefficients, Fitting Activity Coefficient Models to VLE Data, Flash Calculations	26.6%	12
Unit 5: Liquid – Liquid Equilibria (LLE) & Solid – Liquid Equilibria (SLE) Binary liquid–liquid equilibria, Ternary diagrams, Introduction to solid – liquid equilibria.	4.4%	02

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the concept of chemical potential, fugacity and partial molar properties.		
CO2: Understand the Solid- Liquid and Liquid- Liquid equilibrium and test the thermodynamics consistency		
CO3: Calculate solution properties by using Gibbs Duhem and activity coefficient equations	Cognitive	Understand, Evaluate

CO4 Calculate the equilibrium composition of more than one chemical reaction occurs simultaneously	
CO5: Understand vapor liquid equilibrium and to perform bubble point, Dew point and flash calculation	

Learning I	Resources
1.	Reference Books:
	1. J. M. Smith, H. C. Van Ness & M. M. Abbot, "Introduction to Chemical Engineering Thermodynamics", McGraw Hill, (2004).
	2. Y. V. C. Rao, "Chemical Engineering Thermodynamics", Universities Press (1997).
	3. P. K. Nag, "Engineering thermodynamics", Tata McGraw-Hill Education, (2005).
	4. B. G. Kyle, "Chemical Process Thermodynamics", Prentice Hall India, (1994).
	5. S. R. Turns, "Thermodynamics concepts and applications", Cambridge University Press, (2006).
2.	Textbook:
	K. V. Narayan, "A Textbook of Chemical Engineering Thermodynamics", 2nd Ed., Prentice Hall India Learning Private Limited; (2013)
3	Journals & Periodicals
	 The Journal of Chemical Thermodynamics, Elsevier. Journal of Chemical Education, ACS Publications
4	Other Electronic Resources
	Chemical Engineering Thermodynamics, NPTEL Online Course.

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Attendance	05 marks
MCQs	10 marks
Open Book Assignment	15 marks
Article Review	10 marks
Total	40 Marks

Mapping of PSOs & COs

	PSO1 PSO2		PSO3
CO1	3	2	0
CO2	3	2	0
CO3	CO3 3 1		0
CO4	3	2	0
CO5	CO5 3 2		0
Avg.	3	1.8	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	2	0	2	0	0	2
CO2	3	2	2	3	2	1	2	0	2	0	0	2
CO3	3	2	2	3	2	1	2	0	1	0	0	1
CO4	3	3	2	2	2	1	2	0	2	0	0	2
CO5	3	3	2	2	2	2	2	0	1	0	0	2
Avg.	3	2.6	2	2.4	2	1.4	2	0	1.6	0	0	1.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

BTCH504	INSTRUMENTATION &	SEMESTER
	PROCESS CONTROL	${f v}$

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
4	2	0	6	4	1	0	5

Course Pre-requisites	Mathematics I,II,III, Numerical Methods in Engineering,
	Process Calculation
Course Category	Core
Course focus	Skill Development
Rationale	
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student:
(As per Blooms' Taxonomy)	1: Understanding the fundamentals of process control and tools for establishing it for a process.
	2: Developing the transfer functions for establishing a mathematical model for a system in which process control can be implied.
	3: To introduce the fundamentals of process control with applications using P, PI, and PID controllers.
	4: Understanding the frequency response of stability criteria required for a process control in a system.
	5. Understanding the importance of process control instrumentation and their applications in chemical industries.

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Modeling for Process Dynamics	16.6%	10
Introduction to process control, process dynamics, mathematical tools for		
modeling (ODE, PDE, Laplace transform.)		
Unit 2: Linear Open – Loop Systems	25%	15
Response of first order systems, examples of first order systems,		
linearization. Interacting and non – interacting systems. Second order		
systems, transportation lag.		

Unit 3: Linear Closed – Loop Systems Control system, final control element and its mechanisms, controller and their mechanisms. Overall transfer function for single – loop and multi – loop systems. Servo problem, regulatory problem, transient response of control systems, stability and stability criteria.	25%	15
Unit 4: Frequency Response Introduction to frequency response, frequency response analysis, Nyquist stability criteria, Bode's stability criteria, gain margin, phase margin.	16.6%	10
Unit 5: Instrumentation Introduction to measurement, basic measurement devices and working principles for level, flow, pressure and temperature. Instrumentation symbols and labels. Types of control valves.	16.6%	10

List of Practical	Weightag	Contac
	e	t hours
1: Air pressure trainer.	16.6%	2
2: Flow control trainer.	16.6%	2
3: Level control trainer.	16.6%	2
4: Heat exchanger temperature control trainer.	16.6%	2
5. Control valve characteristics.	16.6%	2
6. Cascade control trainer.	16.6%	2

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the basic principles & importance of process control in industrial process plants		
CO2: Understand the use of block diagrams & the mathematical basis for the design of control systems	Cognitive	Understand,
CO3: Measure and calculate/evaluate system parameters and evaluate the response		Evaluate, Analyse
CO4: Understand the importance and application of good instrumentation for the efficient design of process control loops for process engineering plants		

CO5: Identify, analyse and control multi-variable systems	
by using several techniques.	

ar ming i	Resources
1.	Reference Books:
	1. Seborg, Edgar, Mellichamp, Doyle, "Process Dynamics & Control", 3 rd
	Edition, John Wiley & Sons, Inc.
	2. G. Stephanopoulos, "Chemical process control: An introduction to theory
	and practice", Prentice Hall of India Private Limited.
	3. R.P. Vyas, "Process control and instrumentation", 7th Edition, Denett & Co Publication.
	4. R.P. Vyas, "Measurement and control", Denett & Co. Publication.
	5. Donald P. Eckman, "Industrial instrumentation", 1st Edition, CBS.
	6. William L. Luyben, "Process modeling, simulation and control for chemical
	engineers", McGraw Hill International Editions.
	7. D. C. Sikdar, "Instrumentation and Process Control", Khanna Publishers
2.	Textbook:
	D. R. Coughanowr, "Process system analysis and control", 3rd Edition, McGraw
	Hill Publication.
3	Journals & Periodicals
	1. Journal of Process Control, Elsevier.
	2. Industrial and Engineering Chemistry, ACS Publications.
4	Other Electronic Resources
	1. Process Control and Instrumentation, NPTEL Online Course.
	2. Process Control - Design, Analysis and Assessment, NPTEL Online Cours

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
Iviarks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	2	0
CO2	3	2	0
CO3	3	1	0
CO4	3	2	0
CO5	CO5 3		0
Avg.	3	1.8	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	2	0	2	0	0	2
CO2	3	2	2	3	2	1	2	0	2	0	0	2
CO3	3	2	2	3	2	1	2	0	1	0	0	1
CO4	3	3	2	2	2	1	2	0	2	0	0	2
CO5	3	3	2	2	2	2	2	0	1	0	0	2
Avg.	3	2.6	2	2.4	2	1.4	2	0	1.6	0	0	1.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

AECC 501	Disaster Risk Management	SEMESTER
		\mathbf{V}

	Teaching Sch	neme (Hours)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial			
2	0	0	2	2	0	0	2

Course Pre-requisites	Nil					
Course Category	Ability Enhancement Compulsory Course					
Course focus	Employability and Skill Development					
Rationale						
Course Revision/ Approval Date:	24/06/2020					
Course Objectives	To enable the student:					
(As per Blooms' Taxonomy)	 To introduce inter-relationship between disaster and development. To introduce types of disasters with case studies and create awareness. To study the effective use of science for mitigating disasters To study case studies of various famous disasters. To introduce various disaster management frameworks and strategies adopted at national and international levels. 					

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Introduction to Disasters	20%	06
Understanding the Concepts and Definitions of Disaster, Hazard,		
Vulnerability Risk, Capacity Disaster and Development, and Disaster		
Management Fundamental of Disasters-Types, Trends, Causes,		
Consequences and Control: Geological Disasters, Hydro-Meteorological		
Disasters, Biological Disasters, Technological Disasters, and Man-made		
Disasters. Global Disaster Trends –Emerging Risks of Disasters – Climate		
Change and Urban Disasters.		
Unit 2: Disaster Management Cycle and Framework	20%	06
Disaster Management Cycle – Paradigm Shift in Disaster Management,		
Pre-Disaster – Risk Assessment and Analysis, Risk Mapping, Zonation,		
Micro zonation, Prevention and Mitigation of Disasters, Early Warning		
System, Preparedness, Capacity Development; Awareness, During Disaster		

-Evacuation – Disaster Communication – Search and Rescue, Emergency Operation Centre– Incident Command System –Relief And Rehabilitation. Post -disaster Damage and Needs Assessment, Restoration of Critical Infrastructure – Early Recovery – Reconstruction and Redevelopment; IDNDR, Yokohama Strategy, Hyogo Framework of Action, Sendai framework.		
Unit 3: Disaster Management in India Disaster Profile of India Mega Disasters of India and Lessons Learnt, Disaster, Management Act 2005 – Institutional and Financial Mechanism, National Policy on Disaster Management, National Guidelines and Plans on Disaster Management; Role of Government (local, state and national), Non-Government and Intergovernmental Agencies. Disaster Management Act in relation to COVID 19 Pandemic.	20%	06
Unit 4: Role of Science and Technology in Disaster Management Geo-informatics in Disaster Management (RS, GIS, GPS and RS), Disaster Communication System (Early Warning and Its Dissemination), Land, Planning and Development Regulations, Disaster Safe Designs and Constructions, Structural and Non-Structural Mitigation of Disasters, S&T Institutions for Disaster Management in India.	20%	06
Unit 5: Disaster Case Studies Various Case Studies on Disaster and Development, Disaster Prevention and Control, Risk Analysis and Management. Case study relating to COVID -19 to be explored.	20%	06

Instructional Method and Pedagogy: Chalk-board and PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand disasters and its relationships with the development.		
CO2: Understand the prevention and control of Public Health consequences of Disasters	Cognitive	Understand
CO3: Understand the institutional processes about the awareness of Disaster Risk Management in India		
CO4: Develop the skills for Medical and Psycho-Social Response to disasters.		

CO5: Understand the relationship between vulnerability,	
disasters, disaster prevention and risk reduction	

Learning R	esources				
1.	Reference Books:				
	 Goyal, S.L., Encyclopedia of Disaster Management (Vols. 1-3), Deep & Deeep, New Delhi Gupta, A.K., Nair, S.S., Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi. 				
	3. Ibrahimbegovic, A., Zlatar, M., Damage Assessment and Reconstruction after War or Natural Disaster, Springer.				
	4. Menshikov, V.A., Perminov, A.N., Urlichich, Y.M., Global Aerospace Monitoring and Disaster.				
	5. Modh, S., Introduction to Disaster Management, Macmillian Publishers India.6. Srivastava, H.N., Gupta, G.D., Management of Natural Disasters in Developing Countries, Daya Publishers, NIDM AND NIDMA publications.				
2.	Textbook:				
	 Alexander, D., Natural Disasters, Kluwer Academic London. Asthana, N. C., Asthana P., Disaster Management, Aavishkar Publishers. Carter, N., Disaster Management: A Disaster Manager's Handbook, Asian Development Bank. Collins, A.E., Disaster and Development, Routledge. Coppola, D.P., Introduction to International Disaster Management, 2nd Edition, Elsevier Science. 				
3	Journals & Periodicals				
	GSDMJ, disaster management act				
4	Other Electronic Resources				
	GIDM, NIDM				

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous Evaluation Component Marks	Attendance	05 marks
Wiaiks	MCQs	10 marks
	Article review	10 marks
	Open book	15 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	2	1
CO2	2	1	1
CO3	2	1	1
CO4	CO4 2		0
CO5	5 2 2		1
Avg.	2.2	1.6	0.8

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	0	0	1	2	1	1	0	0	0	2
CO2	3	1	0	1	3	2	2	2	2	1	1	2
CO3	3	1	0	1	3	2	2	2	2	1	1	2
CO4	3	1	0	1	3	2	2	2	2	1	1	2
CO5	1	3	2	3	2	2	1	1	2	1	2	2
Avg.	2.6	1.4	0.4	1.2	2.4	2	1.6	1.6	1.6	0.8	1	2

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Course code	Mass Transfer Operations -	Semester
BTCH601	II	VI

	Teaching Sch	neme (Hours)			Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial			
3	2	1	6	3	1	1	5

Course Pre-requisites	Mass Transfer Operations - I
Course Category	Professional core courses
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1:To understand the basic concepts of various mass transfer
Taxonomy)	operations
	2: To select a suitable equipment for a given mass transfer
	operations
	3: To learn designing of mass transfer equipment used in industries.
	4: To learn equilibrium conditions for various systems
	5: To gain knowledge about cooling towers and their importance in
	industries.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Humidification and Dehumidification Operations	20%	12
General principles, vapor-liquid equilibrium and enthalpy for a pure		
substance, absolute humidity, dry-bulb temperature, relative humidity,		
percentage absolute humidity, dew point, humid volume, humid heat,		
adiabatic saturation curves, wet-bulb temperature, gas- liquid contact		
operations, evaporative cooling. Types of cooling towers and their height		
calculations.		
Unit 2: Drying: and crystallization	20%	12
Drying : Introduction and principles of drying, equilibrium, mechanism of		
drying, types of moisture in drying, time for drying, Freeze drying,		
microwave drying, infrared drying, vacuum drying, batch and continuous		
drying equipment – tray dryer, rotary dryer, spray dryer, fluidized bed dryer		
etc.		
Crystallization: Crystallization fundamentals, solubility and saturation,		
Miers theory of crystallization, crystal nucleation, crystal growth,		
population balance, importance of crystal size, material balance, calculation		
of yield, melt crystallization, cryogenic crystallization, Reactive		
crystallization, equipment for crystallization.		
Unit 3: Liquid Liquid Extraction:	20%	12

Liquid-liquid equilibria, single stage extraction, multistage crosscurrent, counter-current and co-current extraction, stage efficiency, equipment for		
extraction. Design of extractors based on triangular diagrams.		
Unit 4: Adsorption and Ion Exchange	20%	12
Adsorption: Basic principles and equilibria in adsorption, types of		
adsorption-physical and chemical adsorption, adsorption adsorption,		
temperature swing adsorption, moving bed adsorber.		
Ion exchange: Principles of ion exchange, techniques and applications,		
equilibria and rate of ion exchange.		
Unit 5: Leaching and Membrane separation	20%	12
Leaching: General principles, continuous leaching, and ideal stage		
equilibrium, constant and variable underflow, equipment for leaching.		
Design based on right angle triangle diagram, Ponchon Savarit method.		
Membrane separation: Introduction to membrane separation processes		

List of Practical	Weightage	Contact hours
1: To study the humidification operation and calculate all the terminologies used for air water contact operation Calculate natural frequency for undamped free vibration of a spring-mass system.	10%	2
2: To measure tower characteristic parameters KaV/L for various liquid and air flow rates (L/G) for forced draft countercurrent cooling tower.	10%	2
3:To determine rate of drying curve for a given solid in a fluidized drier at constant drying conditions	10%	2
4: To determine % crystallization of Crystallization of Benzoic Acid in water.	10%	2
5: To prepare the ternary diagram for a system of three liquid one pair partially soluble i.e. acetic acid, benzene and water system.	10%	2
6. To determine the % extraction for the benzoic acid from dilute aqueous solution using toluene as solvent.	10%	2
7. To study the (cross current) liquid liquid extraction for extracting acetic acid from benzene using water as solvent and determine: 1. Efficiency stage wise & overall. 2. % of acetic acid removed per stage & overall removal of acetic acid. 3. Minimum & maximum solvent in 1 st stage.	10%	2
8. To study and verify the Freundlich's Adsorption Isotherm of adsorption of Oxalic Acid and Charcoal.	10%	2
9. To determine the efficiency of single stage leaching operation for leaching of NaOH aqueous solution & CaCO ₃ .	10%	2
10. To determine the stage efficiency and the overall recovery of NaOH for multistage cross current leaching operation for leaching NaOH from mixture of NaOH and CaCO ₃ using water as a solvent.	10%	2

List of Tutorial	Weightage	Contact
		hours
Unit 1:	20%	2
1. Problems based on various terminologies of psychrometry.		

 Problems based on psychrometric chart Problems based on size of cooling tower. 		
Unit 2:	20%	2
1. Problems based on drying time and moisture content.		
2. Problem based on crystallization yield.		
Unit 3:	20%	2
1. Problems based on triangular graphs.		
2. Problem based on single stage extraction.		
3. Problem based on multistage crosscurrent, counter-current and co-		
current extraction.		
Unit 4:	20%	2
1. Problems based on crosscurrent/ countercurrent adsorption.		
Unit 5:	20%	2
1. Problems based on design based on right angle triangle diagram,		
Problems based on the Ponchon Savarit method.		

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Understand the practical importance of mass transfer in industries. CO2: Able to identify applications of different separation techniques in chemical industries. CO3: Learn designing of mass transfer equipment used in industries. CO4: Learn equilibrium conditions for various systems. CO5: Gain knowledge about cooling towers and their importance in industries.	Cognitive	Understand Apply Apply Create Analyse

Learning Re	esources
1.	Reference Books:
	2. R.E. Treybal, Mass Transfer Operations, McGraw Hill, 3rd Edition.
	3. W.L. McCabe, J. Smith and P. Harriot, Unit Operations of Chemical
	Engineering, Tata McGraw Hill, 7th Edition.
	4. B. K. Dutta, Principles of Mass Transfer and Separation Processes, 2nd
	edition, Prentice Hall of India, 2007.
	5. Seader, Henley, Roper, 'Seperation Process Principles', 3rd edition, John
	Wiley and Sons.
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks					
Theory: Mid semester Marks	20 marks					
Theory: End Semester Marks	40 marks					
Theory: Continuous		1				
Evaluation Component	Attendance	05 marks				
Marks	MCQs	10 marks				
	Open Book Assignment	15 marks				
	Open Book Assignment	10 marks				
	Total	40 Marks				
Practical Marks						
	Attendance	05 marks				
	Practical Exam	20 marks				
	Viva	10 marks				
	Journal	10 marks				
	Discipline	05 marks				
	Total	50 Marks				
Project/ Industrial						
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks				
	Practical understanding of the subject on the Project/Industrial.	30 marks				
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks				
	Attendance	10 marks				
	Total	100 Marks				

	PSO1	PSO2	PSO2
CO1	3	2	2
CO2	3	3	2
CO3	3	3	3
CO4	3	2	2
CO5	3	1	1
Avg.	3	2.2	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	2	3	2	2	3
CO2	3	2	3	2	2	3	0	2	3	2	2	3
CO3	2	2	3	3	3	3	2	3	3	2	2	3
CO4	1	2	3	3	3	2	2	2	3	2	3	3
CO5	2	2	2	2	3	1	1	1	2	2	2	2
Avg.	2.2	2.2	2.6	2.4	2.6	2	1.2	2	2.8	2	2.2	2.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Course code	Chemical Reaction	Semester
BTCH602	Engineering - II	VI

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Total Credit			
3	0	0	3	3	0	0	3

Course Pre-requisites	Chemical Reaction Engineering-I and Mass transfer operations				
	- I				
Course Category	Professional core courses				
Course focus	Employability				
Rationale					
Course Revision/	18/01/2022				
Approval Date:					
Course Objectives	To enable the student to:				
(As per Blooms'	1. Learn the kinetics of fluid fluid reactions and reactor design.				
Taxonomy)	2. Learn the kinetics of fluid solid reactions and reactor design				
	3. Understand physical properties of solid catalyst.				
	4. Learn the kinetics and mechanism of catalytic reaction.				
	5. Apply to the kinetics concept in designing of catalytic reactors.				

Course Content (Theory)	Weightage	Contact hours
Unit 1: Fluid - Fluid reaction kinetics and design:	20%	9
Introduction and rate equation of heterogeneous reaction. Fluid - Fluid		
reaction kinetics and design, The Rate Equation for Straight Mass Transfer		
(Absorption) of A, The Rate Equation for Mass Transfer and Reaction,		
Instantaneous reactions to slow reactions, Liquid film enhancement factor,		
Hatta number, gas - liquid reactors and its design.		
Unit 2: Fluid Particle Reaction kinetics and design:	20%	9
Selection of model, Progressive and shrinking core model for spherical		
particles, Diffusion through gas film control, diffusion through ash layer		
control, chemical reaction control, Determination of rate controlling step,		
Fluid particle reactor design.		
Unit 3: Catalysts and their Properties:	20%	9
Catalysts and their Properties Introduction to Catalysis, homogeneous and		
heterogeneous catalysis, water soluble catalyst. Preparation and		
Characterization of catalysts, Physical and chemical adsorption and metal		
dispersion, Adsorption isotherms, Physical properties of catalyst, surface		
area, void volume, solid density, pore analysis: pore size, pore volume		
distribution, catalyst promoters, Catalyst inhibitors, Catalyst poisons		

Unit 4: Solid-Catalyzed Reaction Kinetics: Nature and Mechanism of Catalytic reactions. Adsorption isotherms and rates of adsorption and desorption. Rate equations for surface kinetics, LHHW model, determining rate controlling step. Various types of reactors to determine kinetics of catalytic reaction.	20%	9
Unit 5: Introduction to Catalytic Reactors and basic design Heterogeneous Data analysis for Reactor Design. Effects of external mass transfer and heat transfer, Pore diffusion, Effectiveness factor. Designaspects of catalytic reactors, Catalyst deactivation. Introduction to Catalytic Reactors: Packed bed catalytic reactor, fluidized bed reactor, trickle bed reactor, slurry reactor.	20%	9

Instructional Method and Pedagogy: Chalk-board, PowerPoint, notes

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Develop the kinetics of fluid-fluid reactions and use the appropriate kinetics in designing of non-catalytic reactors. CO2: Develop rate expressions for gas-solid and liquid solid reactions and use the kinetics in designing of non-catalytic reactors. CO3: Understand the physical properties of catalyst and its importance. CO4: Analyse the catalytic reactors and its applications in industry. CO5: Apply the concept of kinetic model to design the catalytic reactor.	Cognitive	Develop Develop Understand Analyse Apply

Learning Re	esources
1.	Reference Books:
	1. H. Scott Fogler 'Elements of Chemical Reaction Engineering', 5th Edition,
	Prentice Hall India, (2015).
	2. Hougen O.A., Watson K. M., and Ragatz R.A., 'Chemical Process
	Principles', Part III, John Wiley, USA.
	3. L Schmidt, 'The Engineering of Chemical Reactions', 2nd Edition, Oxford,
	(2008).
	4. J. M. Smith, 'Chemical Engineering Kinetics', McGraw-Hill, USA.
2.	Textbook:
	1. O. Levenspiel "Chemical Reaction Engineering", 3rd Edition, John Wiley &
	Sons.
3.	Journals & Periodicals:
4.	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	Attendance MCQs Open Book Assignment Open Book Assignment	05 marks 10 marks 15 marks 10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks
Project/ Industrial		
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks
	Practical understanding of the subject on the Project/Industrial.	30 marks
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks
	Attendance	10 marks
	Total	100 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO2
CO1	3	1	2
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1

CO5	3	2	1
Avg.	3	1.8	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	0	0	0	1	0	0	1
CO2	3	3	2	2	1	0	0	0	1	0	0	1
CO3	3	3	2	2	1	0	0	0	1	0	0	1
CO4	3	3	2	2	1	0	0	0	1	0	0	1
CO5	3	3	3	2	1	0	0	0	1	0	0	1
Avg.	3	3	2.2	1.8	1	0	0	0	1	0	0	1

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Course code	PROCESS EQUIPMENT	Semester
BTCH603	DESIGN - I	VI

	Teaching Sch	neme (Hours)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Total Credit			
3	2	0	5	3	1	0	4

Course Pre-requisites	Heat transfer operations, Mass transfer operations					
Course Category	Professional core courses					
Course focus	Employability					
Rationale						
Course Revision/	18/01/2022					
Approval Date:						
Course Objectives	To enable the student to:					
(As per Blooms'	1. Learn the basic design steps for piping system and fluid					
Taxonomy)	transportation devices					
	2. Learn the process design of various types of heat					
	exchangers, condensers and reboilers					
	3. Learn the process design of Distillation Column using					
	various methods					
	4. Learn the process design of absorption column					
	5. Learn the process design of extractors					

Course Content (Theory)	Weightage	Contact hours
Unit 1: Process design of piping systems and fluid transportation	15.5%	7
devices		
Introduction, process design of piping, piping colors and codes, NPSHA		
&NPSHR, selection criteria of pipes, fittings, valves, pumps, two phase		
flow system design		
Unit 2: Process design of Heat Exchangers	28.8%	13
Design method and criteria for selection of heat exchangers, design of		
condenser and selection criteria for horizontal and vertical condenser,		
process design of reboilers.		
Unit 3: Process design of Distillation Column	26.6%	12
Introduction, selection criteria of design variables for distillation, selection		
of tray and its design parameters, Multi – component distillation design		
using Fenskey – Underwood – Gilliland's (FUG) method.		

Unit 4: Process design of gas – liquid and liquid – liquid equipment	17.7%	8
Absorber : Selection criteria from different available types of absorption		
equipment, amount of solvent utilized, determination of tower diameter,		
pressure drop calculation, NtoG, HtoG and height of packing.		
Unit 5: Extractor:	11.1%	5
Selection criteria from different types of available extractor, choice of		
solvent utilization, Application of extraction in industry.		

Instructional Method and Pedagogy: PowerPoint presentation, chalk-board

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Design process equipment and modify the design of existing equipment to new process conditions or new required capacity CO2: Build a bridge between theoretical and practical concepts used for designing the equipment in any process industries. CO3: Create understanding of equipment design. CO4: Review the importance of design concepts in the process industry. CO5: Review the importance of property estimation.	Cognitive	Create Analyse Understand Apply Apply

Learning Re	esources
1.	Reference Books:
	1. Coulson and Richardson's Chemical Engineering Design (Volume 6), R. K.
	Sinnot, Elsevier Butterworth-Heinemann.
	2. Brownell and Young, Process Vessel Design, Wiley Eastern.
	3. Ludwig, E. E., Applied process design for chemical and petrochemical
	plants, volume 1,2 & 3, Third Edition, Butterworth- Heinemam.
	4. Perry's Chemical Engineers Handbook, Don Green and Robert H. Perry,
	McGraw Hill.
	5. Applied Process Design of Chemical and Petrochemical Plants, E.E.
	Ludwig, Gulf Professional Publications. Volume 1, 2 & 3
	Textbooks:
	1. Introduction to Process Engineering and Design, S. B. Thakore and B. I. Bhatt,
	Tata McGraw Hill.
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous	Attendance	05 marks
Evaluation Component Marks	MCQs	10 marks
Marks	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
D. 4'- IM I		
Practical Marks	Attendance	05 marks
	Practical Exam	20 marks
	Viva	
		10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks
Project/ Industrial		
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks
	Practical understanding of the subject on the Project/Industrial.	30 marks
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks
	Attendance	10 marks
	Total	100 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO2
CO1	2	2	1
CO2	3	3	2
CO3	1	0	1
CO4	3	1	0
CO5	3	3	2
Avg.	2.4	1.8	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	0	2	1	1	2	3	3	2	3
CO2	3	3	2	1	3	3	2	1	3	3	3	3
CO3	1	1	0	2	0	1	3	0	0	3	0	2
CO4	3	3	2	2	2	1	0	0	1	3	3	2
CO5	3	3	2	2	3	2	2	1	3	3	3	3
Avg.	2.6	2.4	1.4	1.4	2	1.6	1.6	0.8	2	3	2.2	2.6

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Professional Electives

COURSE CODE	COURSE NAME	SEMESTER
BTCH605 A	Petroleum Engineering	VI

	Teaching Sch	neme (Hours)			Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial C			
3	0	0	3	3	0	0	3

Course Pre-requisites	Nil
Course Category	Professional Elective
Course focus	
Rationale	
Course Revision/	14/4/2017
Approval Date:	25/03/2022
Course Objectives	1. To understand the terminology, properties and
(As per Blooms'	classification of petroleum
Taxonomy)	2. To remember the origin and composition
raxonomy)	3. To understand various refining aspects
	4. To understand , the modern fractionation processes
	5. To apply the knowledge of petroleum products

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction:	20%	8
History and Terminology, Introduction to petroleum, important properties of petroleum, historical and modern perspectives, Indian Scenario Petroleum, important terminology and definition, composition and classification of petroleum.		
Unit 2: Origin and Occurrence:	20%	10
Origin of petroleum: Abiogenic origin, biogenic origin. Basic difference between origin theories, Petroleum composition and properties.		
Kerogen: Introduction to kerogen, properties of kerogen, composition and classification of kerogen. Isolation of kerogen methods, structural models for kerogen, kerogen maturation, methods for probing kerogen structure		

Unit 3: Introduction to Refining Processes: Introduction to refining of petroleum, Historical developments, Indian scenario of petroleum refining. Important products from petroleum, important test methods for the petroleum fractions, blending process for petroleum products etc. Catalysis And Refining Processes: Introduction to catalysis, importance of catalytic processes, various catalyst used in catalytic processes.	20%	9
Unit 4: Overview of Refining Processes: Various refining processes such as thermal methods, cracking processes, hydro processes, isomerization process, alkylation process, reforming process, polymerization process.	20%	8
Unit 5: Petroleum Fractionation: Primary Treatments Of Petroleum/crude oil: Settling and sedimentation of petroleum, dewatering and desalting processes. Importance of desalting process, heating and pumping of wax petroleum/crude oil. Fractionation Process of Petroleum: Historical development of fractionation of petroleum, modern processes of fractionation such as atmospheric distillation, vacuum distillation and azeotropic and extractive distillation etc. arrangement of reflux type. Equipment used for petroleum fractionation such as columns, packing and trays etc.	20%	10
Instructional Method and Pedagogy: Chalk-board, Power point presentation	1	

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: To understand the terminology, properties and classification of petroleum CO2: To undertsand the origin and composition of petroleum CO3: To understand various refining aspects CO4: To understand the modern fractionation processes CO5: To apply the knowledge of different petroleum products	Cognitive	Understand, Apply

Learning Re	esources
1.	Reference Books:
	James Speight, "The Chemistry and technology of petroleum", 2ndEdition, Marcel Dekker,(1991).
	W.L.Nelson ,Petroleum Refinery Engineering, McGrawHill, Newyork, (1958).
	R.A. Meyers, 'Handbook of Petroleum refining processes',3rd Edition, McGraw Hill, (2004)
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	Attendance MCQs Open Book Assignment Open Book Assignment Total	05 marks 10 marks 15 marks 10 marks 40 Marks

Mapping of PSOs & Cos

	PSO1	PSO2	PSO2
CO1	3	1	2
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	2	1
Avg.	3	1.8	1.2

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	2	0	2	0	0	2
CO2	3	2	2	3	2	1	2	0	2	0	0	2
CO3	3	2	2	3	2	1	2	0	1	0	0	1
CO4	3	3	2	2	2	1	2	0	2	0	0	2
CO5	3	3	2	2	2	2	2	0	1	0	0	2
Avg.	3	2.6	2	2.4	2	1.4	2	0	1.6	0	0	1.8

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE BTCH605 B	COURSE NAME POLYMER SCIENCE & TECHNOLOGY	SEMESTER VI
--------------------------	--	----------------

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Nil
Course Category	Professional Elective
Course focus	Employability
Rationale	international relevance
Course Revision/	14/4/2017
Approval Date:	
Course Objectives	To make learner understand the basics and types of polymer.
(As per Blooms' Taxonomy)	To understand the processes associated with manufacturing of polymers and its recycling.
	To analyse the behaviour of polymer product
	To understand the principles of polymer Technology
	To understand the basic concept of monomer, polymer and repeating units and their properties.
	To understand the basic concept of monomer, polymer and repeating units and their properties.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Fundamentals of polymers Theory: Introduction Introduction to polymers, Basic Concepts, Polymer based industries and feed stocks. Indian scenario of polymer industries. Classification of Polymers. State of polymer, structure property relations and transition temperatures. Polymer solutions, polymer characterization, Molecular weight & its determination techniques, polymer fractionation.	20	10
Unit 2: Classification of polymerization processes Theory: Introduction to polymerization process, Types of polymerization processes	20	10

with their mechanism and kinetics: Chain polymerization, co- polymerization, addition polymerization, Condensation polymerization, coordination polymerization, Techniques of polymerization.		
Unit 3: Types of polymers and their properties Plastics materials & some typical manufacturing process of some polymers: Polyolefins, Polycarbonates, Poly Vinyl Chloride (PVC), Polystyrene, PMMA etc.), Rubbers and fibre materials with typical manufacturing process. Mechanical properties: Elasticity, visco-elasticity, factors affecting mechanical behaviour etc.	30	15
Unit 4: Recycling of polymers/plastics Theory: Recycling of polymers/ plastics, Importance of recycling, Recycling codes.	15	5
Unit 5: Plastic Waste Management: Theory Necessity and importance, social responsibilities towards plastic waste management.	15	5
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Outcomess:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the basic concepts of monomer, polymer, degree of polymerization, and repeating units and their properties	Cognitive	Understand,
CO2: Understand in details about the chemistry, polymerization process and rheology of polymers.		Analyse, Evaluate, Apply
CO3: Analyse polymers by different characterization techniques		
CO4: Apply plastic waste management knowledge		
CO5: Select polymers for different applications and correct approach recycling to make new products.		

Learning Resources			
1.	Reference Books:		
	Premamoy Ghosh, "Polymer science and Technology: Plastic, rubbers, blends and composites, 3rd Edition, Mc Graw Hill Education, (2011).		
	Vasant R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar "Polymer Science", New age international, New Age International Pvt. Ltd Publishers, (2015).		
	George Odian, "Principle of polymerization", 4th Edition, WileyBlackwell publication (2004).		
2.	rnals & Periodicals:		
	Reactive and Functional Polymers, Polymer Journal, Journal of Polymer Science		
3.	Other Electronic Resources:		
	NPTEL		

Evaluation Scheme	Total Marks		
Theory: Mid semester	20 marks		
Marks			
Theory: End Semester	40 marks		
Marks			
Theory: Continuous		_	
Evaluation Component	Attendance	05 marks	
Marks	MCQs	10 marks	
	Open Book Assignment	15 marks	
	Open Book Assignment	10 marks	
	Total	40 Marks	

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	3	1
CO2	2	1	0
CO3	2	2	1
CO4	3	3	2
CO5	3	3	2
Avg.	2.6	2.4	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	0	2	2	0	0	2	1	0	1
CO2	2	3	3	2	1	3	1	0	0	0	1	1
CO3	3	2	0	3	3	0	1	0	0	2	1	1
CO4	3	3	3	2	3	3	3	3	3	2	3	3
CO5	2	3	3	2	3	3	2	0	1	2	3	3
Avg.	2.4	2.6	2	1.8	2.4	2.2	1.4	0.6	1.2	1.4	1.6	1.8

COURSE CODE	COURSE NAME	SEMESTER
ВТСН605Е	GREEN TECHNOLOGY	VI

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
0	0	0	3	3	0	0	3

Course Pre-requisites	Nil
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	25-07-2024
Approval Date:	
Course Objectives	To understand the concept of green technology.
(As per Blooms'	To understand the fundamentals of green and clean production.
Taxonomy)	To learn various routes for waste to wealth generation.
	To apply the concept of green building.
	To make the learner aware of various developments in Green Industrial processes

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to Green Technology	20%	8
The twelve Principles of Green Chemistry and Green Engineering with		
examples. Waste – sources of waste, different types of waste, chemical,		
physical and biochemical methods of waste minimization and recycling.		
Pollution – types, causes, effects and abatement. Environmentally benign		
processes alternate solvents- supercritical solvents, ionic liquids, water as a		
reaction medium, energy efficient design of processes- photo, electro and		
sonochemical methods, microwave assisted reactions.		
Unit 2: Clean Energy production	20%	10
Cleaner Production Concept: Theory of cleaner production, Effect of		
Cleaner Production on industrial economy, Need for Cleaner Production,		
Barriers to Cleaner Production. Cleaner Production Methodology: Six step		
methodology for Cleaner Production, Total quality management concepts,		
Cleaner Production Options, Cleaner Production Programme Indicators,		

Ecologically friendly products, environmental designation, concept of eco-		
design, Case Studies on Cleaner Production: Cleaner production case study in following Industries Textile processing, Paper mill, Dye manufacturing		
Renewable Energy Production: Solar Energy, SPC, Fuel Cell		
Technology, clean hydrogen production, nuclear fuel, wind energy, wave		
energy, hydrogen energy, ocean thermal energy, Bio ethanol, Bio- diesel,		
Fuel economy, Innovation in electric equipment.		
Unit 3: Waste to energy	20%	10
Waste as a Renewable Energy Source, Waste-to Energy Conversion:	2070	10
Thermo-chemical Conversion, Biochemical Conversion, Physico-chemical		
Conversion, Factors affecting Energy Recovery from waste, Agricultural		
Residues, Animal Waste, Industrial Wastes, Forestry Residues, Converting		
Waste Heat to Electricity, Bio energy as by product of waste processing,		
Environmental significance, Introduction to anaerobic digestion, Methane		
production, Bio-methanation from sludge digestion		
Unit 4: Green Farming and Concept of Green Building	20%	10
Organic farming: Soil quality index, soil quality improvement, organic		
farming, organic fertilizer: its types and production, green pesticide, crop		
rotation, Organic farming, Need of Organic Farming, Benefits of Organic		
Farming, Social aspects of Organic Farming, Market aspects of Organic		
Farming, Organic Fertilizer, Benefits of Organic Fertilizer, Preparation of		
Organic Fertilizer, Sources of nutrients for Organic Agriculture: Organic		
Manure – Farmyard manure(FYM) Rural compost, City compost, Oil		
cakes, Animal wastes, Vermicomposts, etc; Characterization and Nutrients		
content of the above sources Concept of Green Building: Need of energy in		
buildings, Role of building design and building services to evaluate the		
energy performance in buildings. Study of Climate and its influence in		
energy performance in buildings. Study of Chinate and its influence in		
building design for energy requirement, Principles of energy conscious		
building design for energy requirement, Principles of energy conscious design of buildings, Passive Cooling. Unit 5: Development of Green Industrial processes	20%	7
building design for energy requirement, Principles of energy conscious design of buildings, Passive Cooling. Unit 5: Development of Green Industrial processes Pollution statistics from various industries, General Characteristics of	20%	7
building design for energy requirement, Principles of energy conscious design of buildings, Passive Cooling. Unit 5: Development of Green Industrial processes Pollution statistics from various industries, General Characteristics of Industrial Effluents, Effects on Environment - ISI tolerance limits for	20%	7
building design for energy requirement, Principles of energy conscious design of buildings, Passive Cooling. Unit 5: Development of Green Industrial processes Pollution statistics from various industries, General Characteristics of Industrial Effluents, Effects on Environment - ISI tolerance limits for discharging industrial effluents into surface water, into public sewers and	20%	7
building design for energy requirement, Principles of energy conscious design of buildings, Passive Cooling. Unit 5: Development of Green Industrial processes Pollution statistics from various industries, General Characteristics of Industrial Effluents, Effects on Environment - ISI tolerance limits for discharging industrial effluents into surface water, into public sewers and onto land for irrigation - Toxic chemicals from industry. Pretreatment of	20%	7
building design for energy requirement, Principles of energy conscious design of buildings, Passive Cooling. Unit 5: Development of Green Industrial processes Pollution statistics from various industries, General Characteristics of Industrial Effluents, Effects on Environment - ISI tolerance limits for discharging industrial effluents into surface water, into public sewers and		7

Course Outcomess:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		Understand,
CO1: Understand the principles of green chemistry and engineering.		Apply, Explain
CO2: Apply design synthetic routes and modification in existing industrial processes of different disciplines.	Cognitive	

CO3: Understand the concept and principles of cleaner production.	
CO4: Apply different unit operations in the industrial production process to minimize pollution.	
CO5: Explain the concept of green building and organic farming.	

Learning R	desources
1.	Reference Books:
	1. Green Chemistry – An introductory text - M. Lancaster, RSC
	2. Green chemistry metrics - Alexi Lapkin and David Constable (Eds) , Wiley publications.
	3. Numersorn, N.L., Liquid Waste from Industry – Theories, Practice and Treatment, Addison-Wesley.
	4. Patwardhan, A.D., Industrial WasteWater Treatment, PHI Learning, 2009 Rao, M.N., and Dutta, A.K., Wastewater Treatment, IBH Publications.
	5. Misra Krishna B., Cleaner Production: Environmental and Economic Perspectives, Springer, Berlin, Latest edition.
	6. Dr. Ruth Hillary , Environmental Management Systems and Cleaner Production Wiley, New York, Latest edition.
2.	Journals & Periodicals:
	Green Technology Journal
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	2	1
CO2	3	1	2
CO3	2	1	2
CO4	3	2	1
CO5	2	1	1
Avg.	2.6	1.4	1.4

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	0	2	2	0	0	3	1	0	1
CO2	2	3	3	2	1	3	1	0	0	0	1	1
CO3	3	2	0	3	3	0	1	0	0	2	1	1
CO4	3	3	3	2	3	3	3	3	3	2	3	3
CO5	2	3	3	2	3	3	2	0	1	2	3	3
Avg.	2.4	2.6	2	1.8	2.4	2.2	1.4	0.6	1.4	1.4	1.6	1.8

COURSE CODE BTCH605F	COURSE NAME INDUSTRIAL ENGINEERING PRACTICES	SEMESTER VI

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Nil
Course Category	Professional Elective
Course focus	Employability
Rationale	International relevance
Course Revision/	14/4/2017
Approval Date:	21/03/2023
Course Objectives	To develop a student's skills in understanding the Intra-functional
(As per Blooms'	linkage of respective Units concepts and activities.
Taxonomy)	To understand the importance of critical data and its analysis, used in each Unit.
	It provides them overview and understand the theories and principles of modern management.
	To enhance their skills to achieve the desired goal in a more efficient and effective way with use facts/data.
	To encourage and make an appreciation of these principles in relation to their own experiences and selected case studies

Course Content (Theory)	Weightage	Contact hours
Unit 1: Principles of Management	20%	9
Theory: Organization, POLCA, Management Functions, Management Roles and skills, Management competency's, Six M's of Management.		
Unit 2: Operation Research, Statistics	20%	11
Operation research Tools & Techniques, Linear Programming Transportation, Queuing, Decision theory Statistics parameters, Qualitative & Quantitative data, Quartile, Measures of Variation		

Unit 3: Industrial Engineering	20%	8
Industrial Engineering, Work study, Techniques of Works study, Time and Motion Study, Flow process chart		
Unit 4: Project Management, Operation Management	20%	7
Phases of Project and Operation Management, Constraints, EVM, Resource Management		
Unit 5: Financial and Cost Management	20%	10
Time value of money, Compounding, Discounting, IRR, NPV, Payback period, Discounted payback period, Balance sheet, P&L, Cash flow Cost classifications, Costing methods		

Instructional Method and Pedagogy: Chalk-board, Power point presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To develop a student's skills in understanding the Intra-functional linkage of respective Units concepts and activities.	Cognitive	Understand,
CO2: To understand the importance of critical data and its analysis, used in each Unit.		Analyse, Evaluate, Apply, create
CO3: It provides them overview and understand the theories and principles of modern management.		Croate
CO4: To enhance their skills to achieve the desired goal in a more efficient and effective way with use facts/data.		
CO5: To apply these principles in relation to their own experiences and selected case studies		

Learning Re	esources
1.	Text books and Reference Books:
	➤ Principles of management by Gupta and Meenakshi,
	➤ Cost and Management Accounting by M N Arora,
	➤ Financial Management by C. Paramasivan, T. Subramanian,
	➤ Project Management by Dr. Sapna Bansal
	➤ Operations Research: An Introduction Book by Hamdy A. Taha
	➤ Principles and Practice by S K Mandal
2.	Journals & Periodicals:
	1. S Rohith, N Mohan, Vinayak Malik, Kuldeep K Saxena, M Akshay Prasad, Modelling and optimization of selective laser melting parameters using Taguchi and super ranking concept approaches, International Journal on Interactive Design and Manufacturing (IJIDeM), Published: 27 August 2022
	2. A multi-objective mathematical planning model for a multi-level sustainable supply chain considering market boom and downturn
	Ali Goodarzi; Ali Mostafaeipour; Hasan Hosseini Nasab; Yahia Zare Mehrjerdi
	JIEMS, Volume 10, Issue 2, December 2023, Pages 19-41
	3. An intelligent hybrid model for forecasting the stock price index volatility: The case of Tehran stock exchange
	Mojtaba Sedighi; Mahdi Madanchi Zaj
	JIEMS, Volume 10, Issue 2, December 2023, Pages 116-130
	https://doi.org/10.22116/jiems.2024.352402.1496
	4. Just-in-time parallel job scheduling: A novel algorithm
	Javad Behnamian
	JIEMS, Volume 9, Issue 2, December 2022, Pages 1-12
	https://doi.org/10.22116/jiems.2022.346243.1491
	5. ORGANIZATIONAL THEORY, SYSTEMIC THINKING AND SYSTEM MANAGEMENT, AIMI Journals, 2012
	6. CUSTOMER RELATIONSHIP MANAGEMENT AND BUSINESS STRATEGIES Profile image of AIMI Journals Industrial Management Institute AIMI Journals Industrial Management Institute 2012

3.	Other Electronic Resources:
	1. A state of the art of Lean Six Sigma in the Indian context – 21st century: a bibliometric analysis, G. Citybabu and S. Yamini
	2. An investigation and implementation framework of Lean Green and Six Sigma (LG&SS) strategies for the manufacturing industry in India
	Jaivesh Gandhi, Shashank Thanki and Jitesh J. Thakkar
	3. The role of big data for Supply Chain 4.0 in manufacturing organisations of developing countries
	Vaibhav S. Narwane, Rakesh D. Raut, Vinay Surendra Yadav, Naoufel Cheikhrouhou, Balkrishna E. Narkhede and Pragati Priyadarshinee
	4. Strategic planning to investigate the decision index of organization for effective total quality management implementation – in context of Indian small and medium enterprises
	Lalit K. Toke and Shyamkumar D. Kalpande

Evaluation Scheme	Total Marks				
Theory: Mid semester	20 marks				
Marks					
Theory: End Semester	40 marks				
Marks					
Theory: Continuous					
Evaluation Component	Attendance	05 marks			
Marks	MCQs	10 marks			
	15 marks				
Open Book Assignment 10 marks					
	Total	40 Marks			

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	0	0	2
CO2	0	0	3
CO3	0	0	1
CO4	0	0	2
CO5	0	0	2
Avg.	0	0	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	1	0	0	3	1	3	3	1	3	3
CO2	2	2	0	1	1	1	0	3	1	2	2	2
CO3	1	1	0	1	1	1	0	2	2	1	1	1
CO4	2	1	1	1	0	0	0	1	2	1	2	3
CO5	1	1	1	1	1	2	0	1	2	1	3	3
Avg.	1.2	1	0.6	0.8	0.6	1.4	0.2	2	2	1.2	2.2	2.4

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE BTCH605G	COURSE NAME ADVANCED SEPARATION TECHNIQUES	SEMESTER VI

Τ	Teaching Sch	neme (Hours	s)		Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Mass Transfer Operations
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	12-06-2018
Approval Date:	21-03-2023
Course Objectives	To understand the basic principles advanced separation
(As per Blooms'	techniques.
Taxonomy)	To study various membrane separation processes.
	To understand advantages and disadvantages of advanced separation techniques over conventional techniques.
	To study limitations of advanced separation techniques.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to membranes and membrane processes	20%	9
Principles, mechanisms, membrane materials and various membrane		
modules used in membrane separation processes, classification, application		
& advantages of membrane separation processes. Membrane Separation		
Processes Gas separation processes, reverse osmosis, ultrafiltration.		
Unit 2: Membrane separation Processes	20%	9
Pervaporation, dialysis and electrodialysis, membrane reactor		
Unit 3: Super Critical Extraction	20%	9
Working Principle of supercritical extraction, advantage & disadvantages		
of supercritical solvents over conventional liquid solvents, advantage &		
disadvantages of supercritical extraction over liquid-liquid extraction,		
applications of supercritical extraction		
Unit 4: Osmotic and Short Path Distillation	20%	9
Osmotic Distillation: Concept, working and application of osmotic		
distillation		

Short Path Distillation: Concept & working of short path Distillation Unit (SPDU), Difference between short path distillation & molecular distillation, applications of SPDU		
Unit 5: Reactive, Catalytic and pressure swing distillation	20%	9
Reactive and Catalytic Distillation: Concept, advantages and		
disadvantages, applications.		
Pressure Swing Distillation: Concept & Working of pressure swing		
distillation (PSD), Advantage & Disadvantages of PSD over azeotropic and		
Extractive Distillation, Applications of PSD		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Outcomess:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Understand importance of advanced separation techniques in industries. CO2: Able to identify applications of different separation techniques in chemical industries. CO3: To apply the advanced separation technique in problem solving where conventional techniques are not fruitful and require replacement. CO4: Learn advantages and disadvantages of advanced separation techniques. CO5: To select criteria for advanced separation techniques and conventional separation techniques.	Cognitive	Understand Apply Evaluate

Learning Ro	esources
1.	Reference Books:
	1. S. B. Thakore and B. I. Bhatt, Introduction to Process Engineering and Design, Tata Mc-Graw Hill
	2. W.L. McCabe, J. Smith and P. Harriot, Unit Operations of Chemical Engineering, 7th Edition, Tata McGraw Hill.
	3. Membrane separation Processes, by Kaushik Nath, PHI pvt. Ltd., 2008

	4. Perry Chemical Engineers Handbook' 8th Edition by R.H Perry and D. Green
2.	Journals & Periodicals:
3.	Other Electronic Resources: NPTEL

Total Marks	
20 marks	
10	
40 marks	
_	
TA.: 1	0.5
Attendance	05 marks
MCQs	10 marks
Open Book Assignment	15 marks
Open Book Assignment	10 marks
Total	40 Marks
	20 marks 40 marks Attendance MCQs Open Book Assignment Open Book Assignment

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	2	0
CO2	3	1	0
CO3	3	1	0
CO4	2	0	0
CO5	2	1	1
Avg.	2.4	1	0.2

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	0	0	1	2	3	0	0	0	0	0
CO2	3	1	1	0	2	3	2	0	0	0	0	1
CO3	3	2	1	0	3	3	1	2	0	0	1	0
CO4	2	1	0	1	1	2	1	1	0	0	0	1
CO5	3	3	2	1	2	0	3	2	0	0	1	1
Avg.	2.4	1.4	0.8	0.4	1.8	2	2	1	0	0	0.4	0.6

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTOE01	PLANT UTILITIES	VI

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial C			
3	0	0	3	3	0	0	3

Course Pre-requisites	NIL
Course Category	Professional Elective
Course focus	Employability
Rationale	international relevance
Course Revision/	14/4/2017
Approval Date:	
Course Objectives	Student will be able to interpret the usage of water as utility across
(As per Blooms'	various applications in an industry.
Taxonomy)	Knowledge of utilization of air and various form of air utilization in industry.
	Understanding of application and means of generation of steam in industry.
	Understanding of refrigeration systems and its utilization in an industry.
	Knowledge of implementing a venting system and vacuum system in an industry

Course Content (Theory)	Weightage	Contact hours
Unit 1: Water	20%	10
Raw water storage and treatment, Treatment of water for soft water and		
D.M. water and RO water, Cooling water system, Fire water system.		
Unit 2: Air	20%	10
Compressed air for blowers and compressors. Classification of Compressor,		
Reciprocating Compressor, Single Stage and Two Stage Compressor, Air		
drying system for instrument air and plant air. Humidification and		
dehumidification of air, operational, maintenance and safety aspects as		

utilities.		
Unit 3: Steam Properties of steam, steam generation by boilers, types of boilers and their operation, Steam generation by using process waste heat, Distribution of steam in plant, Steam distribution including appropriate mechanical valves and instrumentation, Steam traps.	20%	10
Unit 4: Refrigeration Refrigeration mechanisms like compression refrigeration, absorption refrigeration and vacuum ejector system, Types of refrigerants, Importance of insulation, insulation material and their effect on various materials of equipment piping, fitting and valves.	20%	10
Unit 5: Vacuum & Venting Systems Selection of vacuum system for various process operations, Introduction to vacuum systems and types of vents.	20%	5

Course Outcomes: Blooms' Blooms' **Taxonomy Taxonomy Sub** Domain Domain After successful completion of the above course, students will be able to: CO1: Student will be able to **interpret** the usage of water as utility across various applications in an industry. Cognitive Understand, CO2: **Knowledge** of utilization of air and various form of Analyse, air utilization in industry. Remember, CO3: Understanding of application and means of Apply generation of steam in industry. CO4: Understanding of refrigeration systems and its utilization in an industry. CO5: Knowledge of implementing a venting system and vacuum system in an industry

Le	earning Re	sources
	1.	Reference Books: Perry R. H., Green D., Perry's Chemical engineering handbook.
		Jack Broughton; Process utility systems; Institution of Chem. Engineers U.K.

2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	2
CO2	2	2	1
CO3	2	1	1
CO4	2	2	1
CO5	2	1	1
Avg.	2	1.4	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	2	3	2	2	3	2	1
CO2	2	1	2	2	1	2	2	2	2	3	2	1
CO3	2	1	2	2	1	2	2	2	2	3	2	1
CO4	3	2	2	3	2	2	3	1	2	2	2	1
CO5	2	1	2	2	1	2	2	2	2	3	2	1
Avg.	2.2	1.4	1.8	2	1.4	2	2.4	1.8	2	2.8	2	1

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTOE02	CORROSION SCIENCE	VI

Teaching Scheme (Hours)				Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial T				
3	0	0	3	3	0	0	3	

Course Pre-requisites	NIL
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	14/4/2017
Approval Date:	
Course Objectives	To gain the basic knowledge of Corrosion
(As per Blooms'	To understand the thermodynamic and kinetics of corrosion
Taxonomy)	To distinguish the different forms of corrosion
	To gain the knowledge of different corrosion control mechanism
	To understand the major industrial hazards due to corrosion

Course Content (Theory)	Weightage	Contact
		hours
Unit 1:	20%	9
Basics of Corrosion, Anodic and Cathodic Reactions, Corrosion Cells,		
Mechanism of corrosion of iron, Gibbs Free Energy And Electrode		
Potential, Cell Potential and EMF, Nernst Equation, Pourbaix diagram		
Unit 2: Kinetics of corrosion, Corrosion rate, Electrochemical Polarization,	20%	9
Exchange current density, Tafel Equation for anodic and cathodic		
polarization, Mixed Potential Theory, Passivation		
Unit 3: Forms of Corrosion, Uniform Corrosion, Crevice Corrosion,	20%	9
Intergranular Corrosion, Pitting corrosion, Stress corrosion cracking,		
Erosion Corrosion,		
Corrosion control: Anodic and Cathodic Protection and Monitoring,		
Coatings, Paint, Failure of paints and coatings		

Unit 4: Material Selection: Use of Iron, Carbon Steel, low Alloy steels,	20%	9
Titanium alloy, Zirconium alloy Tantalum alloy, Copper alloys, Aluminium		
Alloys in different Chemical Environments, Corrosive environments:		
Sodium chloride, hydrochloric acid, phosphoric acid, hydrofluoric acid,		
sulfuric and nitric acid, Alkalies, Organic acids and halogens		
Unit 5: Corrosion control methods in process industries, Case Studies on	20%	9
Economic appraisals of corrosion control measures and major industrial		
hazards due to corrosion/metal failure.		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Students will understand the basics and fundamentals of Corrosion		
CO2: Students will understand the corrosion mechanism of different material in various environment	Cognitive	Understand, Analyse, Remember,
CO3: Students can analyse the different forms of Corrosion		Apply
CO4: Students will remember different corrosion control mechanism		
CO5: Students can apply the knowledge of corrosion control mechanism for different industrial application		

Learning Re	esources
1.	Principles and Prevention of Corrosion, Denny A. Jones, second edition, Prentice Hall, Upper Saddle River, NJ 07458
	Principles of corrosion Engineering and corrosion control, Zaki Ahmad, Elsevier Science & Technology Books ISBN: 0750659246
	H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, Wiley (NY), (1985).
	Corrosion Engineering by Mars G. Fontana, McGraw-Hill, (1986) Introduction to Corrosion Science by By E. McCafferty, Springer Publication (2010)

	L. L. Shreir, Corrosion. Vol I and II, Butterworths, Kent, (1976)
2.	Journals & Periodicals: Corrosion Science, Elsevier publication Anti Corrosion Methods and Materials, Emerald Publications NACE Newsletter: EAPA NEWS and NACE international Corrosion Press
3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous					
Evaluation Component Marks	t Attendance 05 marks				
IVIAI KS	MCQs	10 marks			
	Open Book Assignment	15 marks			
	Open Book Assignment	10 marks			
	Total	40 Marks			

Mapping of PSOs & COs

	PSO1	PSO2	PSO3	
CO1	2	2	1	
CO2	1	1	1	
CO3	2	2	1	
CO4	3	3	1	
CO5	3	1	1	
Avg.	2.2	1.8	1	

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	0	1	3	1	3	1	0	0	0	1
CO2	1	2	2	1	0	0	0	0	0	0	0	0
CO3	3	3	1	3	3	3	3	0	1	1	2	1
CO4	2	2	1	3	3	2	2	1	0	1	2	0
CO5	2	1	2	1	0	3	1	0	0	0	0	1
Avg.	1.8	2.2	1.2	1.8	1.8	1.8	1.8	0.4	0.2	0.4	0.8	0.6

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTOE08	ENERGY TECHNOLOGY	VI

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial			Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	NIL				
Course Category	Professional Elective				
Course focus	Employability				
Rationale					
Course Revision/ Approval Date:	14/4/2017				
Course Objectives	Study all types of fuels and its impact on Environment.				
(As per Blooms' Taxonomy)	Understand the types of energy, energy storage and energy conversion systems.				
	To enable students to have a fuel usage patterns in various industries.				
	To understand the global energy crisis and finding ways for judicious fuel usage.				
	To comprehend the theories of Nuclear energy, solar energy and energy from Biomass.				

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction Conventional (fossil energy) and non-conventional (alternative energy) resources & reserves. Global Energy production & consumption pattern. Production & consumption pattern in India.	20%	5

Unit 2: Classification of Fuels	20%	15
Solid Fuels: Biomass, Wood and Charcoal. Classification & Rank of Coal, Peat, Lignite, Sub Bituminous coal, Bituminous coal, Anthracite coal,		
Cannel & boghead coal. Physical Properties of coal,		
Proximate & Ultimate Analysis of Coal, Cleaning, washing & Storage of coal. Theory of coal Pyrolysis and Carbonization: Low Temperature Carbonization (LTC), High Temperature Carbonization (HTC),		
Horizontal & Vertical Gas Retorts, Coke Ovens-		
Beehive & By product slot type. Recovery of by-products. Details of Structural configuration and Operating principles.		
Liquid Fuels: Constitution of petroleum, theory of formation of crude petroleum oil. Characterization of crude oil & petroleum fuels. Process of a typical		
Indian refinery. Liquid fuel from coal. Other Synthetic		
Liquid fuels (Benzol, shale oil, Gashol, power alcohol Colloidal fuel). Gaseous Fuels: Classification of gaseous fuel; Physico-chemical principles, Calorific Value, Wobbes		
index, and flame speed. Flow sheet & operation of Producer gas, Water gas, Carburetted water gas, oil gas, cokeoven gas, blast furnace gas, Natural Gas and LPG. Coal Bed Methane.		
Bio Gas: Principles and Operation of Aerobic & Anaerobic digestors, Biogas generation and management & flowsheet with special reference to waste utilization.		
Unit 3: Solar Energy: Devices for measurement of solar flux. Different types of Solar collectors: Flat plate, parabolic, concentric & heliostat, Utilization of Solar Energy- For room heating, water heating other industrial uses -solar Pond, Photovoltaic cells,	20%	10
Chemical storage etc.		
Wind Energy: Basic principles, power in wind, force on blades & turbines, wind energy conversion, site selection, basic components of wind energy conversion systems (WECS), classification of WECS, wind energy collectors, applications of wind energy		
Unit 4: Energy from Biomass: Introduction, energy plantation, biomass conversion technologies, photosynthesis, biogas generation, factors affecting biogas	20%	10

generation, classification of biogas plants & their comparisons, types of biogas plants (including those used in India), biogas from plant wastes,		
community plants & site selection, digester design		
considerations, design calculations, methods of maintaining & starting biogas plants, properties & utilisation of biogas, thermal gasification of biomass, pyrolysis, alternative liquid fuels		
Energy from Oceans: OTEC, methods (open cycle & close cycle) energy from tides, components of tidal power plants, operation, methods of utilisation of tidal		
energy, storage, ocean waves, wave energy conversion devices.		
Unit 5: Hydrogen & Methanol: Properties of Hydrogen, production of hydrogen, thermochemical methods, fossil fuel methods, solar methods, storage & transportation, safety & management, fuel cell introduction.	20%	5
Nuclear Energy: Fission, fusion, fuel for nuclear fission reactor (exploration, mining, milling concentrating, refining, enrichment, fuel fabrication, fuel use, reprocessing, waste disposal), storage & transportation, fast & slow neutrons, multiplication factors & reactor control, Uranium enrichment process, nuclear reactor power plant, fast breeder reactor, boiling water reactor, pressurized heavy & light water reactor.		
Introduction to geothermal energy, Magneto Hydro- Dynamic (MHD) Power Generation. Recovery of low level energy and energy conservation.		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the concepts of energy usage and global energy scenario.		
CO2: Learn the characterization of any fuel and analyze technology applications	Cognitive	Understand, Analyse, Remember,
CO3: To explore the best use of non-renewable energy with minimal intrusion to the environment and of renewable energy to sustain the advancement of civilization.		Apply

CO4: Apply energy conversion device principles and evaluate their operation and performance.	
CO5: Identify the working principle of different resources of energy. Student will be able to interpret the usage of water as utility across various applications in an industry.	

Learning R	esources
1.	➤ Energy Sources 2nd Ed. by G. D. Rai, Khanna Publications, New Delhi
	➤ Fuels & combustion by Samir Sarkar, Orient Longmans (1974)
	> Solar Energy by Sukatame, Tata McGraw Hill, New Delhi
	➤ Energy Technology by Rao & Parulaker
2.	Journals & Periodicals:
	Energy and fuels, energy and environment, International Journal of Energy research,
	Renewable Energy Journal
3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	2
CO2	2	2	1
CO3	2	1	1
CO4	2	2	1
CO5	2	1	1
Avg.	2	1.4	1.2

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	2	3	2	2	3	2	1
CO2	2	1	2	2	1	2	2	2	2	3	2	1
CO3	2	1	2	2	1	2	2	2	2	3	2	1
CO4	3	2	2	3	2	2	3	1	2	2	2	1
CO5	2	1	2	2	1	2	2	2	2	3	2	1
Avg.	2.2	1.4	1.8	2	1.4	2	2.4	1.8	2	2.8	2	1

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

AECC	Indian Constitution	SEMESTER
601		VI

	Teaching Sch	neme (Hours)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial			
2	0	0	2	2	0	0	2

Course Pre-requisites	Nil				
Course Category	Ability Enhancement Compulsory Course				
Course focus	Employability and Skill Development				
Rationale					
Course Revision/	24/06/2020				
Approval Date:					
Course Objectives	To enable the student:				
(As per Blooms'	1. To understand the Indian Constitution.				
Taxonomy)	2. To remember the framework of Indian Constitution.				
	3. To understand of the role of the government of the union.				
	4. To be aware of the role of the state government.				
	5. To understand administration organization				

Course Content (Theory)	Weightag e	Contac t hours
Unit 1: Constitution – Strategies and Principles:	20%	06
1. Meaning and important of constitution		
2. Making of Indian constitution – sources		
3. Salient Features of Indian constitution.		
Unit 2: Fundamental Rights and Directive Principles	20%	06
1. Fundamental Rights		
2. Fundamental Duties		
3. Directive Principles		
Unit 3: Government of the Union	20%	06
1. President of India – Election and powers		
2. Prime Minister and council of ministers		
3. Lok Sabha – composition and Powers		

4. Rajya Sabha – Composition and Powers		
Unit 4: Government of the States & The Judiciary	20%	06
1. Governor – Powers		
2. Chief Minister and Council of ministers		
3. Legislative Assembly – Composition and Powers		
4. Legislative Council – Composition and Powers		
5. Features of judiciary system in India		
6. Supreme Court – Structure and Jurisdiction		
Unit 5: Administrative Organization and Constitution	20%	06
1. Federalism in India – features		
2. Local Government – Panchyats and Powers and functions 73rd and 74th		
Amendments		
3. Election Commission – Organization and functions		
4. Citizen Oriented Measure – RTI and PIL – Provisions and Significance.		

Instructional Method and Pedagogy: Chalk-board and PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO:1 Analyse importance of Indian constitution. CO:2 Know powers of state and union government.		Understand
CO3: Understand administration of Indian Constitution	Cognitive	Analysis

Learning R	Learning Resources						
1.	Reference Books:						
	➤ Introduction to the constitution of India, Durga Das Basu LexisNexis						
2.	Textbook:						
	➤ India's Constitution by M.V. Pylee , New Delhi S. Chand Publication						
	➤ The Constitutional Law of India by J.N. Panday Allahabad Central Law Agency						
	➤ Constitution of India by National Portal of India						

3	Journals & Periodicals
4	Other Electronic Resources

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous					
Evaluation Component Marks	Attendance	05 marks			
Walks	MCQs	10 marks			
	Article review	10 marks			
	Open book	15 marks			
	Total	40 Marks			

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	2	1
CO2	2	1	1
CO3	2	1	1
Avg.	2.3	1.3	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	0	0	1	2	1	1	0	0	0	2
CO2	3	1	0	1	3	2	2	2	2	1	1	2
CO3	3	1	0	1	3	2	2	2	2	1	1	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCH701	PROCESS MODELLING, SIMULATION	VII
	AND OPTIMIZATION	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
4	2	0	6	4	1	0	5

Course Pre-requisites	Knowledge of unit operations, material & energy balances.
Course Category	Core
Course focus	Employability and Skill Development
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1. Understand and learn the concepts for applying modelling-
Taxonomy)	based simulation and Techniques.
	2. Perform the simulation of the chemical processes, different
	parts of the processes and unit operations
	3. Get familiar with the preferred software packages and
	optimization techniques to solve linear programming and
	nonlinear programming problems.
	4. Use principles of Engineering to develop equality and
	inequality constraints.
	5. Learn various optimization techniques and optimize the
	problems linked with chemical engineering.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Modelling, Simulation & Optimization and applications in Chemical Engineering.	5%	4
Unit 2: Modelling Role of modelling in chemical engineering, classification of process models, model building, characteristics of mathematical models, formulation of dynamic models with various case studies based on mass, component, momentum and energy balances, Fluid flow, heat transfer, mass transfer and reaction engineering phenomena.	25%	13
Unit 3: Simulation Role of simulation in chemical engineering, partitioning and tearing, sequential and modular approaches to process simulation, analytical and numerical methods for solving model equations, accuracy and error analysis, commercial simulators, introduction to role of computation in simulation.	25%	13

Unit 4: Optimization Introduction to optimization, types of optimizations, optimization problem and its formulation, general approach for solution, objective functions, classification of optimization problems and methods.	15%	12
Unit 5: Optimization Techniques Conditions for maxima/minima; analytical methods: direct search (without constraints), lagrangian multiplier (with constraints), gradient method of optimization; single and multivariable search linear (LP) and nonlinear (NLP) programming with constraints and their applications; examples of optimization in chemical processes like: optimizing recovery of waste heat, optimal shell and tube heat exchanger design, optimal design and operation of binary distillation column, chemical reactor design and operation.	30%	18

List of Practical	Weightage	Contact hours
1: Introduction to Software Packages	10%	2
2: Introduction to simulation using, flow sheeting concepts (sequential modular, equation oriented) by using CHEMCAD/ASPEN Plus/DWSIM.	10%	2
3: To perform pure component property analysis by using CHEMCAD/ASPEN Plus/DWSIM.	10%	2
4: To perform property analysis of mixture by using CHEMCAD/ASPEN Plus/DWSIM.	10%	2
5: Simulation of Flash Distillation by using CHEMCAD/ASPEN Plus/DWSIM.	10%	2
6. Compute the bubble point by using CHEMCAD/ASPEN Plus/DWSIM.	10%	2
7. Compute the dew point by using CHEMCAD/ASPEN Plus/DWSIM.	10%	2
8. Produce Txy and Pxy diagram by using CHEMCAD/ASPEN Plus/DWSIM.	10%	2
9. Simulation of binary distillation column by using CHEMCAD/ASPEN Plus/DWSIM.	10%	2
10. Simulation of reactor and to estimate the %conversion using CHEMCAD/ASPEN Plus/DWSIM.	10%	2

Instructional Method and Pedagogy: Chalk-board, industrial visit, activities, PowerPoint

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students		
will be able:		
CO1: To understand computational techniques to solve the		Understand
process models.		Apply
CO2: To apply process models based on conservation		
principles and process data.	Cognitive	Apply
CO3: To use optimization as a tool in process design and		
operation.		Create
CO4: To get proficient in the applications of optimization		
for optimizing important industrial processes		Analyse
CO5: To work on professional simulation software such as		
ASPEN PLUS, GAMS, HYSIS, CHEMCAD and		
MATLAB which will make them ready for industry.		

Learning Ro	esources
1.	Reference Books:
	1. Wayne Bequette, "Process Dynamics: Modeling, Analysis and Simulation",
	Prentice Hall International Inc.
	2. William L. Luyben, "Process Modeling, Simulation and Control for Chemical
	Engineers", McGraw Hill International Editions.
	3. Ramiez, 'Computational methods for process simulation', Butterworth,
	(1992).
2.	Textbook:
	1. B. V. Babu, "Process Plant Simulation". Oxford, (2005).
	2. Edgar, Himmelblau, and Lasdon "Optimization of Chemical Process"
	McGraw-Hill, (1990)
3.	Journals & Periodicals:
	1. International Journal of Modeling, Simulation, and Scientific Computing.
	2. International Journal of Modeling and Simulation.
	3. International Journal of Modeling, Simulation and Applications, Simulation
	Modelling Practice and Theory
4.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Attendance	05 marks
MCQs	10 marks
Open Book Assignment	15 marks
Article Review	10 marks
Total	40 Marks
Attendance	05 marks
Attendance Practical Exam	05 marks 20 marks
Practical Exam	20 marks
Practical Exam Viva	20 marks 10 marks
	MCQs Open Book Assignment Article Review

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	1	0
CO2	3	2	1
CO3	2	3	1
CO4	3	3	1
CO5	2	3	2
Avg.	2.2	2.4	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	0	1	0	1	2	0	1	2	0	1
CO2	3	2	0	1	0	0	1	0	2	3	1	2
CO3	2	3	3	1	3	2	0	1	2	3	3	2
CO4	3	2	3	2	3	1	0	0	3	3	2	2
CO5	3	3	3	2	3	1	1	1	3	2	3	3
Avg.	2.4	2.2	1.8	1.4	1.8	1	0.8	0.4	2.2	2	1.8	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCH702	PLANT DESIGN &	VII
	ECONOMICS	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Basic knowledge of chemical processing plant
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student:
(As per Blooms'	1: To understand the fundamentals of process plant design.
Taxonomy)	2: To learn the design of process auxiliaries.
	3: To learn the development of plant layout.
	4: To study the different factors affecting project cost estimation.
	5. To understand project planning and scheduling.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction	17.7%	8
Introduction to Plant Design, Process flow sheets development, Types of		
flow sheets, Tools of the process design, Selection of process, Factors		
affecting process selection, Types of project design, Pilot plant, Safety		
Factors.		
Unit 2: Process Auxiliaries and Utilities Theory	20%	9
Process Auxiliaries: Piping design, layout, support for piping		
insulation, types of valves, process control & instrumentation control		
system design		
Process Utilities: Process water, boiler feed water, water treatment &		
disposal, steam, compressed air and vacuum system.		
Unit 3: Optimum Design Strategy for Process Equipment and Plant	20%	9
Layout		
Standard and special equipment, Material of construction for equipment,		
Specification sheet, Choice of equipment such as reactor, Mass transfer		
equipment, Heat transfer equipment, Factors affecting plant location,		
Principle of plant layout, Use of scale models		
Unit 4: Finance for Non-finance	22.2%	10
Basics of Finance and Accounting		
Understanding Financial Statements -Balance Sheet: assets, liabilities, and		

equity, Profit and Loss Account (Income Statement), Cash Flow Statement Cost Concepts and Budgeting-Types of costs: fixed, variable, direct, indirect, Break-even analysis, Budgeting basics and types of budgets Working Capital and Business Finance - Working capital management, Basics of capital structure, Sources of finance: equity, debt, internal accruals, Time value of money and simple investment appraisal (NPV, IRR, Payback Period)		
Unit 5: Project Planning Introduction to Project Planning, Work Breakdown Structure (WBS), Introduction to Gantt Charts and timelines, Critical Path Method (CPM) basics, Project scheduling tools, Resource and Cost Planning, Risk and Contingency Planning.	20%	9

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Understanding of the plant design and will be able to select the process. CO2: Design different auxiliaries and utility sections of process plant. CO3: Design the overall plant layout. CO4: Estimate the cost of a project. CO5: Calculate breakeven point and will be able to do	Cognitive	Understand Create Create Analyse Analyse
scheduling of a project plan.		

Learning R	Learning Resources		
1.	Reference Books:		
	1. Perry R. H., "Chemical Engineering Handbook", McGraw Hill, 7 th Edition.		
	2. F. C. Vibrandt and C. E. Dryden, "Chemical Engineering Plant Design",		
	McGraw Hill, 5th Edition.		
	3. Ernst E. Ludwig, "Applied Project Engineering & Management", Gulf Pub.		
	Co., (1988).		
	4. R Turton, R Balie, WB Whiting, J Shaeiwitz, D Bhattacharya Prentice Hall		
	(4th Edition) Analysis, Synthesis, and Design of Chemical Processes 2013		
	5. Douglas J McGraw-Hill Sciences (1 st Edition) Conceptual Design of		
	Chemical Processes		
2.	Textbook:		
	1. M. S. Peters and Timmerhaus, "Plant Design & Economics for Chemical		
	Engineers", McGraw Hill, 5th Edition.		
3	Journals & Periodicals:		
	1. International Journal of Production Research, Taylor & Francis Online		
4	Other Electronic Resources:		
	1. Process Design Decisions & Project Economics, NPTEL		

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	1	0
CO2	3	3	1
CO3	2	2	1
CO4	2	3	2
CO5	2	0	1
Avg.	2	1.8	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	0	1	0	1	2	0	1	2	0	1
CO2	3	2	3	1	3	2	1	0	3	3	3	2
CO3	3	2	1	0	2	1	1	0	3	3	2	3
CO4	3	3	1	2	3	3	1	2	3	3	3	3
CO5	2	2	1	3	1	0	0	2	2	3	3	2
Avg.	2.4	2	1.2	1.4	1.8	1.4	1	0.8	2.4	2.8	2.2	2.2

COURSE CODE	COURSE NAME	SEMESTER
BTCH708	PROCESS EQUIPMENT	VII
	DESIGN - II	

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	1	3	2	0	1	3

Course Pre-requisites	Engineering Mechanics, Process Equipment Design - I
Course Category	Core
Course focus	Employability and Skill Development
Rationale	
Course Revision/	18/01/2022
Approval Date:	21/03/2023
Course Objectives	To enable the student:
(As per Blooms'	1: To understand the codes/standards for designing a process
Taxonomy)	equipment in mechanical aspects and to learn about properties associated with material selection for construction of pressure vessels.
	2: To gain knowledge about hazards occurring and safety measures adopted in process industries.
	3: To learn the design aspects of supports and other peripherals required for pressure vessels
	4: To learn the methods for designing a pressure vessel.
	5. To gain knowledge about sustainability of a process in terms of
	design aspects.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Stress and Strain relationship, Terminologies	13.34%	4
Selection of materials of construction for piping, Stress & strain		
relationships. Fabrication and finishing techniques for process equipment.		
Design codes and terminologies associated with pressure vessel design.		
Unit 2: Design of Shell, Design of Heads, L/D ratio of vessel &	13.34%	4
Compensation for Opening		
Design of different components of pressure vessels like Shell, Heads, L/D		
ratio & compensation for the openings.		
Unit 3: Design of supports and flanges	20%	6
Different types of supports, mechanical design of bracket support, skirt,		
support & saddle support, classification of flanges, their important features		
& selection criteria.		
Unit 4: Mechanical design of pressure vessel:	26.67%	8
Unit 4: Mechanical design of pressure vessel:		
Classification of pressure vessel, mechanical design of shell and head: shell		

and head subjected to internal pressure, Graphical & analytical method for Shell, different types of head, their selection criteria, Mechanical design of heads.		
Unit 5: Vessel under external pressure, Vessel under very high pressure Design of vessels with Inside vacuum, high pressure outside & combination of both. Design of external pressure vessel with elastic & plastic failures, Theories of elastic failure for design of high pressure vessels, Monobloc & its limitations.	26.67%	8

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation, tutorials

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able: CO1: To understand the codes/standards for designing a process equipment in mechanical aspects. CO2: To understand about properties associated with material selection for construction of pressure vessels. CO3: To design aspects of supports and other peripherals required for pressure vessels. CO4: To design of a pressure vessel. CO5: To understand sustainability of a process in terms of design aspects.	Cognitive	Understand Understand Create Create Understand

Learning Re	sources
1.	Reference Books:
	2. Brownell and Young, 'Process Equipment Design', 1st Edition, Wiley
	Publication, (2009).
	3. S. B. Thakore and B. I. Bhatt, 'Introduction to Process Engineering and
	Design', 2nd Edition, McGraw-Hill Education (India) Pvt. Ltd., (2015).
	4. Perry's Chemical Engineers Handbook, 8th Edition, Don Green and Robert
	H. Perry, Mc- Graw Hill.
2.	Textbook:
	1. V.V. Mahajani and S. B. Umarji, 'Joshi's Process Equipment Design', 5 th
	Edition, Trinity Press, (2017).
	2. B.C. Bhattacharya, 'Introduction to chemical equipment design –Mechanical
	aspects'. CBS Publishing Co., (2008).
3	Journals & Periodicals:
	1. IS:2825-1969, Design Codes for Unfired Pressure Vessels
	2. International Journal of Pressure Vessels and Piping, Elsevier
4	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	2	1	1
CO3	3	3	0
CO4	3	3	0
CO5	1	1	0
Avg.	2.2	1.8	0.4

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	2	1	2	2	0	0	2
CO2	1	2	2	2	1	2	3	2	2	0	0	2
CO3	3	3	3	2	2	2	2	1	2	1	1	1
CO4	3	3	3	2	2	1	2	1	2	1	1	2
CO5	2	2	2	1	1	2	3	1	1	2	2	2
Avg.	2.2	2.4	2.4	1.6	1.4	1.8	2.2	1.4	1.8	0.8	0.8	1.8

COURSE CODE	COURSE NAME	SEMESTER
BTCH710	CHEMICAL PROCESS SAFETY	VII

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Knowledge about chemical process equipment
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	14/07/2017
Approval Date:	18/01/2022
Course Objectives	To enable the student:
(As per Blooms'	
Taxonomy)	 Understand the fundamental concepts of process, plant, and environmental safety in chemical industries. Learn the causes and consequences of major industrial accidents to develop a risk-aware engineering mindset. Develop knowledge of hazard identification, risk assessment techniques, and process safety tools such as HAZOP, LOPA, FMEA, etc. Gain familiarity with engineering controls, plant design features, and safety instrumentation that protect personnel, environment, and assets. Explore environmental regulations, pollution prevention technologies, and sustainability integration in chemical plant operations.

Course Content (Theory)	Weightage	Contact
		hours
Unit I: Process Safety Fundamental	22.2%	10
Definitions & Concepts: Risk and hazard definitions, goals of process safety		
management (PSM), Overview of Major Incidents, Definitions- Toxicity		
classes, exposure thresholds (TLVs), routes of exposure and control methods,		
Flammability limits, fire triangle, types of explosions (deflagration, detonation,		
BLEVE), Runaway reactions and self-accelerating decompositions; introduction		
to reaction hazard assessment.		
Unit II: Hazard Identification and Risk Analysis	26.6%	12
Hazard Analysis Techniques- HAZOP studies, What-If, FMEA, Fault Tree		
Analysis (FTA), Quantitative Risk Assessment- Consequence and		
frequency analysis; risk matrices; Layer of Protection Analysis (LOPA),		
Release & Dispersion Models-Source terms; plume modeling of gases and		
vapors, Development of Risk Management Plan/Emergency response		
procedures.		

Unit III: Plant Safety	22.2%	10
• Engineering Controls: Design of pressure relief devices, rupture disks, flare		
systems, and alarms for overpressure protection.		
• Instrumentation & Control: Overview of Safety Instrumented Systems		
(SIS), interlocks, and shutdown systems.		
• operating Procedures: Standard operating procedures, lockout/tagout, confined space entry protocols.		
 Personal Safety: Work rules, PPE (gloves, respirators, etc.), hazard communication (labels and Safety Data Sheets) 		
• Electrical & Static Safety: Grounding, bonding, and controls to prevent ignition.		
• Emergency Systems: Fire protection (sprinklers, extinguishers), spill containment, evacuation plans.		
• Safety Audits & Culture: Plant safety audits, training programs, and fostering a proactive safety culture.		
• Emergency Response: Onsite and offsite emergency planning and drills; liaising with local authorities.		
Unit IV: Environmental Safety	15.5%	07
Regulations & Standards- Overview of major environmental regulations (EPA,		
EU, ISO 14000) and their implications for chemical plants, Environmental Risk		
Assessment, Sustainable Design, Safety/Environment Interface- Case studies		
on incidents with environmental release (e.g. Seveso dioxin release) and		
remediation, Corporate Responsibility- Integration of safety and environmental		
goals (e.g. UN SDGs for Clean Air, Clean Water)		
Unit V: Safety Management and Case Studies	13.3%	06
Regulatory Compliance: OSHA PSM elements, Safety Management		
Systems- Hierarchy of controls, management of change (MOC), incident		
investigation, near-miss reporting. Organizational Culture- Training and		
competence; leadership accountability;		
Case Studies: In-depth analysis of major accidents to identify root causes, systemic failures, and preventive measures.		

Instructional Method and Pedagogy: Chalk-Board, Presentation, videos, notes

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Describe key principles of process safety, plant safety, and environmental protection. CO2: Identify and classify chemical process hazards using standard hazard identification methods. CO3: Analyze and assess process risks using tools like HAZOP,	Cognitive	Understand Apply Apply Apply Understand

FMEA, Fault Tree, and LOPA.	
CO4: Recommend appropriate engineering controls and safety systems to prevent and mitigate hazards.	
CO5: Explain major environmental safety regulations and propose basic pollution control measures.	
CO6: Critically evaluate industrial accident case studies and suggest preventive strategies.	

Learning Re	sources
1.	Reference Books:
	1. Environmental Pollution Control Engineering By C. S. Rao
	2. Sanders, 'Chemical process safety' 3rd Ed, Elsevier, (2005).
	3. Environment Engineering by Metcalf and Eddy
	4. Alarm Management: A Comprehensive Guide, 2nd Ed., By Bill R. Hollifield
	and Eddie Habibi.
	5. HAZOP guide to best practice by Frank Crawley& Brian Tayler 3rd ed.,
	Elsevier.
2.	Textbook:
	1. Crowl and Louver 'Chemical Process applications:' 3rd Ed., Prentice Hall,
	(2011)
3	Journals & Periodicals:
4	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End	40 marks	
Semester		
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	3	1	0
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	1	1
Avg.	3	1.6	0.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	2	0	0	1	1	0	1
CO2	1	1	1	2	1	0	0	0	1	1	0	1
CO3	1	2	2	2	1	0	0	0	1	1	0	1
CO4	2	1	3	1	1	0	0	0	1	1	0	1
CO5	1	1	1	1	1	0	0	0	1	1	0	1
Avg.	1.2	1.2	1.6	1.4	1	0.4	0	0	1	1	0	1

	COURSE NAME	SEMESTER
COURSE CODE	TRANSPORT PHENOMENA	VII
BTCH709		

	Teaching Sch	neme (Hours)		Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Total				
3	0	0	3	3	0	0	3	

Course Pre-requisites	Fluid Flow Operations, Heat Transfer Operations and Mass
	Transfer operations
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	21/03/2023
Course Objectives	To enable the student to:
(As per Blooms'	1: Develop an understanding of the conservation laws that govern
Taxonomy)	mass, momentum, and heat transfer.
	2: Learn to derive and solve the ordinary and partial differential
	equations that result from the application of the conservation laws
	to specific systems.
	3: Develop the ability to formulate and solve mathematical models
	for physical situations.
	4: To enable the students to understand and different mathematical
	models applied to actual situations.
	5. To enable the students to understand Mechanism of fluids in
	motion under different conditions.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to Transport Phenomenon:	11%	5
Classification of Transport Processes, Conservation Laws, Vector and		
Tensor Calculus Concept of Viscosity, Newton's Law of Viscosity,		
Thermal conductivity and mechanism of energy transport, Equation of		
Molecular Mass Transport, Molecular Diffusion in Gases.		
Unit 2: Principles of Momentum Transport:	33%	15
Shell Momentum Balance, Application of Shell Momentum Balance		
(Unidirectional flow): Flow of Falling Film, Flow Through Circular Pipe,		
Flow Through annulus, Flow Over Moving Plate		
Unit 3: Principles of Heat Transport:	33%	15
Steady State Condition and Fourier's Law, Shell Energy Balance and		
temperature distributions in solids and laminar flow, Applications of Shell		
Energy Balance: Heat Conduction with Electrical Source, Heat Conduction		
with Chemical Heat Source, Introduction to Governing equations of Forced		
& Natural Convention Heat Transfer.		
Unit 4: Principles of Mass Transport:	22%	10

Equimolar Counter Diffusion, Diffusion of A through Non-Diffusing B,	
introduction of diffusion with homogeneous reaction & heterogeneous	
chemical reaction	

Instructional Method and Pedagogy: PowerPoint presentation, chalk-board

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students		
will be able to: CO1: Students would gain the knowledge of fundamental connections between the conservation laws in heat, mass,		Understand
and momentum in terms of vector and tensor fluxes.	Cognitive	Understand
CO2: The students would be able to understand the		
mechanism of fluids in motion under different conditions		Apply
CO3: Recognize and apply analogies among momentum,		Apply
heat and mass transfer.		
CO4: Apply information obtained from solutions of the		Understand
balance equations to obtain Engineering quantities of		
interest.		
CO5: To understand Mechanism of fluids in motion under		
different conditions		

Learning Re	esources
1.	Reference Books:
	2. Christie John Geankoplis, "Transport Processes and Separation Process
	Principles", 4th Edition, PHI Learning Private Limited., New Delhi
	3. Incropera, "Fundamentals of Heat and Mass Transfer", 6th Edition, John
	Wiley & Sons (Asia) pvt. Ltd.
	4. W.J.Thomson, "Introduction to Transport Phenomena", Pearson Education
	Asia, NL.S.Sissom, and D.R.Pitts, "Elements of Transport Phenomena",
	McGrawHill, New York, 1972.
	5. R.W.Fahien, "Elementary Transport Phenomena", McGraw-Hill, New York,
	1983.
	6. J.R. Welty, R.W. Wilson, and C.W.Wicks, Rorer G.E, Wilson R.W.
	"Fundamentals of Momentum Heat and Mass Transfer", V Edn. John Wiley,
	New York, 2007.
2.	Textbook:
	1. R. Byron Bird, "Transprt Phenomena", 2nd Edition, John Wiley &Sons
	(Asia) pvt. Ltd.
3	Journals & Periodicals:
	1. International Journal of Transport Phenomena
4	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	2	1
CO2	2	3	0
CO3	2	3	0
CO4	2	3	0
CO5	2	2	0
Avg.	2	2	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	2	2	1	1	1	0	1
CO2	1	2	3	3	2	1	1	1	2	0	0	2
CO3	3	2	3	3	3	2	1	1	2	0	0	2
CO4	3	2	3	3	2	1	2	1	1	0	0	2
CO5	2	3	1	2	1	1	1	1	1	1	0	2
Avg.	2	1	2	1	2	2	2	1	1	1	0	1

COURSE CODE BTCH706A PETROLEUM REFINING PROCESSES	SEMESTER VII
---	-----------------

П	Teaching Sch	neme (Hours	·)	Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Tota				
3	0	0	3	3	0	0	3	

Course Pre-requisites	Mass Transfer Operations, Process Technology
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	14/07/2017
Approval Date:	18/01/2022
Course Objectives	To enable the student to:
(As per Blooms'	1: Learn about processes associated with cracking of petroleum.
Taxonomy)	2: Understand the need of catalysts in various processes while
	going for cracking of petroleum.
	3: Learn about the important process parameters for refining
	processes.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1:	17.7%	8
Thermal Cracking: Introduction to thermal cracking, importance of		
thermal cracking processes, early processes used for thermal cracking.		
Commercial processes: Visbreaking process, coking process, Processes		
for heavy feedstock etc.		
Unit 2:	22.2%	10
Cracking: Introduction to catalytic cracking, importance of catalytic		
cracking processes, early processes used for catalytic cracking. Difference		
between thermal cracking and catalytic cracking.		
Commercial processes: Fixed bed process, fluid bed process (FCC), moving bed process and processes for heavy feedstock. Catalysts used for catalytic processes, important process parameters for catalytic cracking.		
Unit 3: Catalysts, Deasphalting and Dewaxing processes:	20%	9
Introduction to deasphalting and dewaxing process, Importance of the		
deasphalting and dewaxing process. Deasphalting process, process		
options for heavy feedstocks, Dewaxing process.		
Unit 4: Hydrotreating and Desulphurization:	22.2%	10
Introduction to hydrotreating and desulphurization, importance of		
hydrotreatment and desulphurization process, commercial processes,		
catalyst used for hydrotreatment and desuphurization, processes for heavy		

feedstocks for hydrotreatment and desuphurization. Gasoline and Diesel Fuel Polishing.		
Unit 5:	17.7%	8
Environmental Aspects of Refining: Environmental rules and		
Regulations.		
Refinery Wastes: Types of refinery wastes, their processing techniques.		
Environmental Analysis.		

Instructional Method and Pedagogy: PowerPoint presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Understand the cracking process in refineries.		Understand
CO2: Understand the application and selection of catalyst in catalytic cracking processes. CO3: Analyse the process selection for a particular operation as well as parameters for the same.	Cognitive	Understand Apply

Learning Re	sources
1.	Reference Books:
	1. James Speight, "The Chemistry and technology of petroleum", 2 nd Edition,
	Marcel Dekker,(1991).
	2. W.L.Nelson, Petroleum Refinery Engineering, McGrawHill, Newyork,
	(1958).
	3. R.A. Meyers, `Handbook of Petroleum refining processes', 3 rd Edition,
	McGraw Hill, (2004).
2.	Textbook:
	1. B.K.Bhaskar Rao, "Modern Petroleum Refining Processes", Oxford and
	IBH,(2007).
3	Journals & Periodicals:
4	Other Electronic Resources

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous
Evaluation Component
Marks

Attendance	05 marks
MCQs	10 marks
Open book	15 marks
Article review	10 marks
Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	2	1
CO2	1	2	0
CO3	1	2	0
Avg.	1	2	0.33

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	0	2	1	1	1	0	1	2
CO2	1	1	2	2	1	2	2	1	2	0	0	1
CO3	1	1	2	1	1	2	1	1	1	0	2	1
Avg.	1	1	1.66	1.66	0.66	2	1.33	0.22	1.33	0	1	1.33

COURSE CODE	COURSE NAME	SEMESTER
BTCH706B	POLYMER PROCESSING	VII

П	Teaching Sch	neme (Hours	s)	Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial To				
3	0	0	3	3	0	0	3	

Course Pre-requisites	Basic knowledge of Polymer and its associated properties			
Course Category	Professional Elective			
Course focus	Employability			
Rationale				
Course Revision/	14/07/2017			
Approval Date:				
Course Objectives	To enable the student to:			
(As per Blooms'	1: Learn the fundamentals of chemical engineering aspects of			
Taxonomy)	polymeric materials.			
	2: Study the aspects of processing, testing and applications.			
	3: Equip students with basic knowledge of polymer synthesis that			
	will help them to develop new materials.			
	4. To study of various types of mould and understand their			
	construction and working.			
	5. Develop the capacity to make informed, scientific decisions			
	involving materials selection and processing			

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Basic aspects of Polymers	20%	9
Functionality, types, structure-property relationship, processing		
fundamentals, processing aids and additives and their purpose (e.g.		
antioxidants, plasticizers, antistatic agents, blowing agents etc.),		
Morphology, Rheology and flow of polymers.		
Unit 2: Chemical Engineering aspects of Polymer Processing	6.6%	3
Heat and mass transfer in polymer systems, mixing of polymers, mixing		
equipment.		
Unit 3: Polymer Processing Techniques	40%	18
Extrusion of polymers: Extrusion equipment, calendaring-equipment,		
manufacturing and analysis		
Thermoforming: Types, various techniques-equipment, manufacturing		
and analysis		
Moulding of polymers: Blow moulding, compression moulding, transfer		
moulding, rotational moulding, and injection moulding techniques, insert		
mouldingequipment, manufacturing and analysis		
Unit 4: Other processing techniques	6.6%	3
Sheet forming, fibre spinning, pultrusion, techniques and Equipment.		

Unit 5: Polymer Properties and determination	26.6%	12
Mechanical Properties: Different types of Impact tests: Determination of		
impact tests for different polymeric materials. Study of creep, relaxation,		
set and fatigue		
Electrical Properties: Their importance and significance, effect of		
temperature and humidity on electric properties.		
Thermal Properties: Determination of melting point and softening point		
for different polymers		
Environmental Resistance Properties: Effect of liquids and chemicals.		
Study of weathering resistance. Study of weathering property. Study of		
fire resistance.		

Instructional Method and Pedagogy: Industrial visits, activities, animated presentations/videos

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Understand the need of additives and flow properties of polymer during processing CO2: Apply knowledge of additives and formulation for producing different products CO3: Analyse polymer using various characterization techniques. CO4: Understand the various processing techniques of polymers to produce different products CO5: Analyse the process specific equipment, various dies, their working and designing aspects.	Cognitive	Understand Apply Analyse Understand Evaluate

Learning Re	esources
1.	Reference Books:
	1. Vasant R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar "Polymer Science", New age international, New Age International Pvt. Ltd Publishers, (2015).
	2. George Odian, "Principle of polymerization", 4th Edition, Wiley Blackwell Publication (2004).
	3. Principle of Polymer Processing, R.T. Fenner, Maxwell McMillan International Edn, London.
	4. Middleman S, Fundamentals of Polymer Processing, McGraw-Hill Engineering with Polymers - Powell, (1977).
2.	Textbook:
	1. Premamoy Ghosh, "Polymer science and Technology: Plastic, rubbers,
	blends and composites, 3rd Edition, Mc Graw Hill Education, India,
	(2011).
	2. Polymer Processing, Morton & Jones, Chapman & Hall.

	3. Fundamentals of Polymer Processing, S. Middleman, HoughtonMifflin Company, 1997.
3	Journals & Periodicals:
	1. International Polymer Processing, Progress in Polymer Science, Polymer
	Degradation and Stability
4	Other Electronic Resources:
	1. NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	2	2
CO2	2	3	2
CO3	2	2	1
CO4	3	1	3
CO5	1	3	0
Avg.	2.2	2.2	1.6

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	0	0	1	1	1	2	1	0	1
CO2	2	1	2	0	1	1	0	1	2	1	0	1
CO3	2	1	2	3	2	1	0	0	2	1	0	1
CO4	3	3	1	2	3	3	0	1	1	1	0	1
CO5	1	3	3	1	3	0	1	0	2	1	0	1
Avg.	2	1.8	1.8	1.2	1.8	1.2	0.4	0.6	1.8	1	0	1

COURSE CODE	COURSE NAME	SEMESTER
BTCH706C	BIOPROCESS	VII
	ENGINEERING	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Basic knowledge of bio chemistry
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/ Approval Date:	14/07/2017
Course Objectives (As per Blooms'	To familiarize students with little or no formal training in the life sciences.
Taxonomy)	To focus on the engineering aspects of biotechnology.
	To study about issues include enzyme technology, cell growth and product formation, transport etc.
	To study about bio-reactors, bio-reactor design, media formulation and sterilization and bio-separations etc.
	To co relate the engineering with bio processing techniques and to understand the biological factors on reaction

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to Bio process Basic microbiology:	20%	6
Cell growth, factors affecting cell growth, metabolism, cell growth models,		
kinetics of thermal death of cells & spores. Design of Fermentation Media,		
batch and continuous culture, multistage culture.		
Unit 2: Kinetics Enzyme Kinetics:	20%	9
Principles of catalysis, introduction to enzyme kinetics, enzyme inhibition,		
stability, mass transfer in immobilized enzyme		
Fundamental of genetics and recombinant DNA technology: site		
directed mutagenesis		
Unit 3: Sterilization	20%	9
Sterilization: concept and methods. Type of Sterilizations, Batch heat		

sterilization of liquids, Estimation of sterilizer efficiency, Continuous heat sterilization of liquids, Sterilization of air: Methods & Mechanism and filter design. Radiation and chemical sterilization. Problems on calculation of		
sterilization time		
Unit 4: Bioreactors	20%	15
Introduction to Fermenter Design Types of bioreactors. Ideal Reactor		
Operation: Batch, Fed Batch & Continuous operation of mixed bioreactors,		
Chemostate with immobilized cells, Chemostate with cell recycle, substrate		
utilization and product formation in bioreactor. Solid state Fermentations		
and it's applications. Mass Transfer in Bioreactors, Role of diffusion,		
Convective mass transfer, Gas-liquid mass transfer, Oxygen uptake in cell		
cultures, Factor affecting cellular oxygen demand, Oxygen transfer in		
bioreactors, Measurement of volumetric oxygen transfer coefficient,		
Oxygen transfer in large bioreactor. Introduction to bioreactor control		
mechanism and basic concepts of computer modeling and optimization in		
bio-process		
Unit 5: Downstream Processing	20%	6
Filtration, ultrafiltration, precipitation of proteins, chromatography,		
electrophoresis and crystallization.		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	n	

Course Outcomess:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Students will be able to understand the integrated bio process. CO2: Students will learn to maintain contamination free environment in bio processes and to develop concepts to scale-up bio processes. CO3: Students will understand about bio-reactors, bio-reactor design, media formulation and sterilization and bio-separations etc. CO4: Students will be able to apply engineering aspects of biotechnology to the fields required the bio processes.	Cognitive	Understand, Apply, Learn
CO5: Students will have brief understanding of overall knowledge of life science.		

Learning Resources

1.	Reference Books:
	1. Biochemical Engineering- S. Aiba , A.E. Humphray, University of Tokyo Press
	2. Bioprocess Engineering Principles – P. M. Doran, 5th ed
	3. Bioprocess Engineering: Basic Concepts by Shular & Kargi
	4. Hand Book Of Bioengineering- Skalak R & Shu Chien, 4th ed.
2.	Journals & Periodicals:
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	1	0
CO2	3	3	1
CO3	2	2	1
CO4	2	3	2
CO5	2	0	1
Avg.	2	1.8	1

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	2	0	2	0	0	2
CO2	3	2	2	3	2	1	2	0	2	0	0	2
CO3	3	2	2	3	2	1	2	0	1	0	0	1
CO4	3	3	2	2	2	1	2	0	2	0	0	2
CO5	3	3	2	2	2	2	2	0	1	0	0	2
Avg.	3	2.6	2	2.4	2	1.4	2	0	1.6	0	0	1.8

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCH706E	PROCESS	VII
	INTENSIFICATION	

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Knowledge of chemical engineering operations & processes.
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	14/07/2017
Approval Date:	
Course Objectives	To understand basics of process intensification processes
(As per Blooms' Taxonomy)	To apply the knowledge of process intensification in Chemical Industries
	To learn to convert batch to continuous process
	To save the Energy utilization in industry

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to Process Intensificatio	20%	8
Definition of PI, History; Principles of PI, Objectives of PI in detail,		
Techniques of PI applications, Sustainability in process industry		
Unit 2: Process intensification of different Processes	20%	10
Fluid Flow Processes, Heat & mass transfer processes, Mixing, Separation,		
Reactor Design, Thermodynamic Processes, Mechanical Operations Etc.		
Unit 3: Pinch Technology	20%	9
Pinch Technology		
Unit 4: Network system	20%	10
Heat Exchanger Network Synthesis, Mass Exchange Network Synthesis.		
Unit 5: Case studies	20%	8
Case studies based on Microreactors, Microfabrication, Scale-up mixing,		
Compact heat exchangers, Sonocrystallization, Transformation Batch/semi-		
batch continuous process etc		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Outcomess:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Able to identify problems of different processes of chemical industry.		Remember, Understand
CO2: Ability to solve the problems related to process engineering using process intensification.	Cognitive	Charistala
CO3: Learn the transformation of semi batch processes into continuous processes		

Learning Re	esources
1.	Reference Books:
	1. Reay D., Ramshaw C., Harvey A., Process Intensification, Butter worth Heinemann, 2008.
	2. Innovations for process intensification in the process industry by S.V. Shivakumar, N.Kaistha, D.P.Rao., IIT Kanpur.
2.	Journals & Periodicals:
3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	2	2
CO2	2	3	2
CO3	2	2	1
CO4	3	1	3
CO5	1	3	0
Avg.	2.2	2.2	1.6

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	0	0	1	1	1	2	1	0	1
CO2	2	1	2	0	1	1	0	1	2	1	0	1
CO3	2	1	2	3	2	1	0	0	2	1	0	1
Avg.	2	1	1.6	1	1	1	0.4	0.6	2	1	0	1

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Total Credit		
3	0	0	3	3	0	0	3

Course Pre-requisites	Industrial Management Fundamentals		
Course Category	Professional Elective		
Course focus	Employability		
Rationale			
Course Revision/	18/01/2022		
Approval Date:	21/03/2023		
Course Objectives	To enable the student:		
(As per Blooms'	1. 1: To understand concepts of Materials Management and		
Taxonomy)	Resource Optimization		
	2. To understand basics of quality management principles and		
	tools adopted		
	3. To learn different aspects of Business laws.		
	4. To understand Industrial Relations Conflicts & Resolutions		
	Process		
	5. To understand concepts of Lean Management.		

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Materials Management	26.6%	12
Materials Management, Inventory control, ABC analysis, EOQ, Resource		
Optimization, Logistics, Logistics relationships.		
Unit 2: Quality Management and Tools	22.2%	10
Six Sigma, Six Sigma Methodology And Tools Elements of TQM, Tools of		
TQM, Total Quality Management and Analytical Tools.		
Unit 3: Business Laws	17.7%	8
Business Legal aspects, Types of firms, Types of Business Law.		
Unit 4: Industrial Relations	15.5%	7
Industrial Relations, Employer Rights, Misconduct, Harassment &		
Discrimination, Industrial Conflicts & Resolutions Process and Case studies		
Unit 5: Lean Management, Industrial Practices.	17.7%	8
Lean Thinking, Mudi, Mura, 7 Wastes, Concepts and Tools of LEAN,		
Industrial Practices, Brand Value		

Instructional Method and Pedagogy: PowerPoint presentation, videos, chalk-board

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able: CO1: To develop the skills in understanding the Intrafunctional linkage of respective Units concepts and activities. CO2: To understand the importance of critical data and its analysis, used in each Unit CO3: To gain an overview and understanding of the theories and principles of modern management CO4: To enhance their skills to achieve the desired goal in a more efficient and effective way with use facts/data CO5: To make an appreciation of these principles in relation to their own experiences and selected case studies	Cognitive	Understand Aanalyse Apply Evaluate Create

Learning Re	esources
1.	Reference Books:
	1. Management: Principles and Practice by S K Mandal.
2.	Textbook:
	1. The Lean Six Sigma Pocket Toolbook: by Michael L. George, John Maxey,
	David Rowlands, Mark Price
	2. Principles of management by Gupta and Meenakshi, Project Management by
	Dr. Sapna Bansal
	3. Operations Research: An Introduction Book by Hamdy A. Taha.
3	Journals & Periodicals:
4	Other Electronic Resources:

Evaluation Scheme	Total Marks				
Theory: Mid semester	20 marks				
Marks					
Theory: End Semester	40 marks				
Marks					
Theory: Continuous Evaluation Component	Attendance	05 marks			
Marks	MCQs	10 marks			
	Open book	15 marks			
	Article review	10 marks			
	Total	40 Marks			

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	0	0	2
CO2	0	0	3
CO3	0	0	1
CO4	0	0	2
CO5	0	0	2
Avg.	0	0	2

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	1	0	0	3	1	3	3	1	3	3
CO2	2	2	0	1	1	1	0	3	1	2	2	2
CO3	1	1	0	1	1	1	0	2	2	1	1	1
CO4	2	1	1	1	0	0	0	1	2	1	2	3
CO5	1	1	1	1	1	2	0	1	2	1	3	3
Avg.	1.2	1	0.6	0.8	0.6	1.4	0.2	2	2	1.2	2.2	2.4

^{1:} Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCH801	PROJECT	VIII

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
0	20	0	20	0	20	0	10

Course Pre-requisites	All courses studied till 7 th semester
Course Category	Project
Course focus	
Rationale	
Course Revision/ Approval Date:	14/07/2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Integrate all the subjects that they have learnt and design plants/processes.
	2: Gather scientific information on a particular topic, analyse the information from scientific principles, and present a written and oral summary on the topic.
	3: Develop the ability to identify clear and achievable objectives and plan the project to achieve them.
	4: Make students understand how to work in the group, achieve targets as a team under the mentor-ship of faculty members.
	5: Develop writing and presentation skills among students and to be able to contribute with their work in the field of chemical engineering.

Course Outcomes:	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: Identify clear and achievable objectives and plan the project to achieve them.	Understand	List
CO2: Demonstrate the ability to pick the right methodology for the project and should be able to justify it.	Apply	Apply
CO3: Demonstrate the personal abilities and skills required to produce and present an extended piece of work.	Apply	Apply
CO4: Demonstrate the ability for analysis of the process and outcome.	Apply	Apply
CO5: Show initiative, enthusiasm and commitment to the task.	Apply	Apply

Evaluation Scheme							
PARTICLUARS	MARKS DISTRIBUTION	COMMITTEE					
First Review: Problem identification, objective, motivation, scope, work plan.	15%	Internal					
Second Review: Methodology, procedure, primary design, primary calculation.	15%	Internal					
Third Review: Detailed design, detailed calculation.	15%	Internal					
Project Report	15%	Internal					
Final Presentation	25%	External					
Continuous Evaluation	15%	Internal					

Mapping of PSOs & COs

	PSO1	PSO2	PSO3	
CO1	2	2	2	
CO2	2	1	1	
CO3	2	2	2	
CO4	3	3	1	
CO5	3	3	1	
Avg.	2.4	2.2	1.4	

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	0	1	0	1	3	3	2	3	0	1
CO2	1	1	2	0	0	1	2	2	3	3	0	1
CO3	3	2	1	0	2	1	1	2	3	3	2	3
CO4	3	3	3	2	1	3	2	3	3	3	3	2
CO5	3	3	3	2	1	3	2	3	3	3	3	2
Avg.	2.4	2.2	1.8	1	0.8	1.8	2	2.6	2.8	3	1.6	1.8

VAC 201		Tinkering & Mentoring	L	T	P	С		
			0	0	2	1		
T	70. 4				400			
Total Credits: 1 Total Hours in semester : 30 Tot					s: 100			
1	Course P	Course Pre-requisites: NA						
2	Course C	Category:						
	Value Ad	Value Added Course						
3	Course R	Course Revision/ Approval date						
4		Course Objectives						

- 4.1 To provide hands-on experience in problem-solving and prototyping through group-based tinkering projects.
- 4.2 To develop entrepreneurial, creative, and critical thinking skills among students.
- 4.3 To enhance students' understanding of industry standards, intellectual property rights, and ethical practices.
- 4.4 To foster collaboration, teamwork, and communication skills through multidisciplinary group projects.
- 4.5 To expose students to real-world case studies, expert insights, and best practices in innovation and sustainability

Course Content	Weightage	Contact hours	Pedagogy
Unit 1 Introduction to Entrepreneurship: Understanding the concept, need, myths, and types of entrepreneurship. Importance of entrepreneurship in innovation and problem-solving.	10%	3	Expert talks, brainstorming sessions, and case studies.
Unit 2 Idea Generation and Feasibility Study: Identifying opportunities, developing Minimum Viable Products (MVP), assessing product-market fit, and pricing strategies.	20%	6	Interactive mentoring sessions, group brainstorming, and discussions.
Unit 3 Intellectual Property Rights (IPR): Overview of patents, copyrights, trademarks, and technology transfer. Importance of IPR in securing innovation.	10%	3	Expert talks and group discussion on real-life case studies.

Unit 4 Values, Ethics, and Standards: Importance of values in professional and personal growth. Sustainable solutions, eco- friendly systems, and understanding of BIS	3	Expert talks and group discussion
standards and their role in innovation		

and industry.			
Unit 5: Tinkering and Prototyping: Hands-on project work in groups to develop solutions for identified problems. Projects will include: Physical Prototypes for engineering and science students. Conceptual Modules (e.g., software, programs) for IT students. Business Cases or Models for management students. Students will work closely with faculty mentors to brainstorm, design, and create functional prototypes or models.	50%	15	Practical tinkering sessions, faculty mentoring

Learning Resources		
1.	Textbook: N/A – The course relies on expert experiential learning and	
	practical activities.	
2.	Reference books	
	1. "The Lean Startup" by Eric Ries	
	2. "Zero to One" by Peter Thiel	
	3. "Intellectual Property Rights: Unleashing the Knowledge Economy"	
	by Prabuddha Ganguli	
3.	Journal	
	Articles from Harvard Business Review and MIT Sloan Management	
	Review.	
4.	Periodicals	
	Business Standard, Economic Times, and Forbes articles on	
	entrepreneurship and innovation.	
5.	Other Electronic resources	
	TED talks, and online courses on prototyping and entrepreneurship.	

Sr No	Evaluation Component	Marks
1	Continuous Evaluation Component	50
A	Attendance	10

В	Progress Report Presentation - Problem	15
	identification, Ideation & Initial Design	
C	Progress Report Presentation - Progress Review	15
	and Prototype Development	
D	Expert Session Takeaway Report	10
2	End Semester Component	50
A	Final Project Presentation and Demonstration	30
В	Viva-Voce	20

	1. Students will understand entrepreneurial concepts,	
	including business plans, feasibility studies, and	
Course Outcomes	product-market fit.	
	2. Students will gain insights into intellectual	
	property rights, ethical practices, and	
	sustainability in innovation.	
	3. Students will work effectively in teams,	
	demonstrating collaboration, communication, and	
	leadership skills.	
	4. Students will connect theoretical knowledge with	
	practical applications through expert talks and	
	hands-on tinkering activities	
Additional Information to	Expert Talks : Delivered by professionals and industry	
enhance learning	leaders on topics such as entrepreneurship, IPR, and	
	sustainability.	
	Hands-On Tinkering Projects: Guided by faculty	
	mentors, with resources provided by GUIITAR.	